Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-10T09:41:32.700Z Has data issue: false hasContentIssue false

Weathering evolution in lutites of the K/Pg transition red beds of the Tremp Group (Tremp-Isona Basin, south Pyrenees)

Published online by Cambridge University Press:  02 January 2018

J. Bastida*
Affiliation:
Dpto Geología, Universidad de Valencia, Dr. Moliner, 50, Burjassot (Valencia) 46100, Spain
R. Linares
Affiliation:
Dpto Geología, Universitat Autònoma de Barcelona, Campus UAB, Bellaterra (Barcelona) 08193, Spain
A.M. López Buendía
Affiliation:
INNCEINNMAT S.L, Parque Científico de la Universidad de Valencia, C/Catedrático Agustín Escardino, 9, Paterna (Valencia) 46980, Spain
M.C. Osácar
Affiliation:
Dpto Ciencias de la Tierra, Universidad de Zaragoza, Zaragoza 50009, Spain
J. Rosell
Affiliation:
C. de la Penya, Áger (Lleida) 3-25691, Spain
M. Zarroca
Affiliation:
Dpto Geología, Universitat Autònoma de Barcelona, Campus UAB, Bellaterra (Barcelona) 08193, Spain
*

Abstract

The Tremp–Isona basin (south-central Pyrenees, Lleida, Spain) shows maximum development of the Tremp Group (early Maastrichtian to late Paleocene) covering a wide geological record across the Cretaceous–Paleogene (K/Pg) boundary in continental facies. The mineralogy and geochemistry of lutites were used to assess the evolution of weathering from the Maastrichtian to the Eocene, and particularly for the red beds of the Lower Red and Upper Red Units (pre- and post-K/Pg, respectively). Chemical weathering decreased initially in the Maastrichtian (Gray Unit to Lower Red Unit), increasing subsequently from the Paleocene (Upper Red Unit) to Eocene units. ANOVA analysis of mineralogical compositions and cluster hierarchical analysis have been useful tools to select convenient lutites for assessment of weathering evolution by the chemical alteration index and by broadening of the 001 X-ray diffraction line of illite after ethylene glycol solvation. The lesser chemical weathering found in the Upper Red Unit (Danian) is interpreted in the context of relative warming and aridification, in climates of contrasting seasons and pronounced dry seasons.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arkai, P. (1993) The distinction between low-T retrograde metamorphism and weathering plus burial diagenesis of the gneiss and mica schist basement-complex, Great Plain, Hungary - a novel use of illite crystallinity. Neues Jahrbuch für Mineralogie-Monatshefte, 8, 337351.Google Scholar
Arostegui, I.E., Baceta, I., Pujalte, Y. & Carracedo, M. (2011) Late Cretaceous—Palaeocene mid-latitude climates: inferences from clay mineralogy of continental-coastal sequences (Tremp-Graus area, southern Pyrenees, N Spain). Clay Minerals, 46, 105126.CrossRefGoogle Scholar
Baceta, J.I. (1996) ElMaastrichtiense superior, Paleoceno e Ilerdiense inferior de la Región Vasco-Cantábrica: Secuencias Deposicionales Facies y Evolución Paleogeográfica. PhD thesis, Universidad del País Vasco, Spain.Google Scholar
Baceta, J.I., Pujalte, V., Serra-Kiel, J., Robador, A. & Orue-Etxebarria, X. (2004) El Maastrichtiense final, Paleoceno e Ilerdiense Inferior de la Cordillera Pirenaica. Pp. 308313 in: Geología de España (J.A. Vera, editor). SGE-IGME, Madrid.Google Scholar
Baceta, J.I., Wright YE & Pujalte Y (2001) Palaeo-mixing zone karst features from Paleocene carbonates of north Spain: criteria for recognizing a potentially widespread but rarely documented diagenetic system. Sedimentary Geology, 39, 205216.CrossRefGoogle Scholar
Bastida, J., Osácar, M.C., Sancho, C. & Muñoz, A. (2013) Environmental changes during the Upper Pleistocene— Holocene in Mediterranean NE Spain as recorded by the mineralogy and geochemistry of alluvial records. Quaternary International, 302, 319.CrossRefGoogle Scholar
Bolle, M.P. & Adatte, T. (2001) Palaeocene-early Eocene climatic evolution in the Tethyan realm: clay mineral evidence. Clay Minerals, 36, 249261.CrossRefGoogle Scholar
Chamley, H. (1967) Possibilités d'utilisation de la cristallinite d'un mineral argileux (illite) comme temoin climatique dans les sediments recents. Comptes Rendues de I'Academie des Sciences de Paris, D, 265, 184187.Google Scholar
Chamley, H. (1989) Clay Sedimentology. Springer-Verlag, Berlin, pp. 518524.CrossRefGoogle Scholar
Cojan, I. & Moreau, M.G. (2006) Correlation of terrestrial climatic fluctuations with global signals during the Upper-Cretaceous-Danian in a compressive setting (Provence, France). Journal of Sedimentary Research, 76, 589604.CrossRefGoogle Scholar
Cuevas, J.L. (1992) Estratigrafía del “Garumniense” de la cuenca de Tremp. Acta Geologica Hispanica, 27, 95108.Google Scholar
Davis, B.L. & Smith, D.K. (1989) Table of experimental reference intensity ratios. Powder Diffraction, 3, 201206.CrossRefGoogle Scholar
Díez-Canseco, D., Arz, J.A., Benito, M.I., Díaz-Molina, M. & Arenillas, I. (2014) Tidal influence in red beds: A palaeoenvironmental and biochronostratigraphic reconstruction of the Lower Tremp Formation (South-Central Pyrenees, Spain) around the Cretaceous/ Palaeogene boundary. Sedimentary Geology, 312, 319.CrossRefGoogle Scholar
Domingo, L., López-Martínez, N., Soler-Gijón, R. & Grimes, S.T. (2007) A multi-proxy geochemical investigation of the early Paleocene (Danian) continental palaeoclimate at the Fontllonga-3 site (South Central Pyrenees, Spain). Paleogeography, Paleoclimatology Paleoecology, 256, 7185.CrossRefGoogle Scholar
Eichenseer, H. (1987) Facies Geology of Late Maastrichtian to Early Eocene Coastal and Shallow Marine Sediments, Tremp —Graus Basin, North-eastern Spain. PhD thesis, University of Tübingen, Germany.Google Scholar
García Senz, J. (2002) Cuencas extensivas del Cretácico inferior en los Pirineos centrales, formación y subsecuente inversión. PhD thesis, Universidad de Barcelona, Spain.Google Scholar
Gawenda, P., Winkler, W., Schmitz, B. & Adatte, T. (1999) Climate and bioproductivity control on carbonate turbidite sedimentation (Paleocene to earliest Eocene, Gulf of Biscay, Zumaia, Spain). Journal of Sedimentary Research, 69, 12531261.CrossRefGoogle Scholar
Gilmour, I. (2002) The end of an era. Pp. 283342 in: The Cretaceous World (P. Skelton, editor). Cambridge University Press, Cambridge, UK.Google Scholar
Golovneva, L.B. (2000) The Maastrichtian (Late Cretaceous) climate in the Northern Hemisphere. Pp. 4354 in: Climates Past and Present (M.B. Hart, editor). Special Publications, 181, Geological Society, London.Google Scholar
Gómez-Gras, D., Roigé, M., Fondevilla, V., Oms, O., Boya, S. & Remacha, E. (2016) Provenance constraints on the Tremp Formation Paleogeography (southern Pyrenees): Ebro Massif VS Pyrenees sources. Cretaceous Research, 57, 414—427.CrossRefGoogle Scholar
IGC (2001) Mapa geològic de Catalunya, E. 1:25 000. Isona 290-2-1 (66-23). Servei Geològic de Catalunya, Barcelona.Google Scholar
IGC (2008) Mapa geològic de Catalunya, E. 1:25 000. Àger 327-2-1 (64-25). Servei Geològic de Catalunya, Barcelona.Google Scholar
IGC (2009) Mapa geològic de Catalunya, E. 1:25 000. Tremp 252-1-2 (65-22). Servei Geològic de Catalunya, Barcelona.Google Scholar
ITGE (1994) Mapa geológico de España, 2a Serie (MAGNA), Memoria Hoja N° 252 (Tremp). Instituto Tecnológico Geominero de España, Madrid, 63 pp.Google Scholar
ITGE (1996) Mapa geológico de España, 2a Serie (MAGNA), Memoria Hoja N° 290 (Isona), Instituto Tecnológico Geominero de España, Madrid, 55 pp.Google Scholar
Jaboyedoff, M., Bussy, F., Kiibler, B. & Thelin, Ph. (2001) Illite “crystallinity” revisited. Clays and Clay Minerals, 49, 156167.CrossRefGoogle Scholar
Jeans, C.V. (1978) The origin of the Triassic clay assemblages of Europe with special reference to the Keuper Marl and Rhaetic of parts of England. Philosophical Transactions A, 289, 1365 pp.Google Scholar
John, C.M., Bannered, N.R., Longstaffe, F.J., Sica, C., Law, K.R. & Zachos, J.C. (2012) Clay assemblage and oxygen isotopic constraints on the weathering response to the Paleocene-Eocene thermal maximum, east coast of North America. Geology, 40, 591594.CrossRefGoogle Scholar
Krumm, S. & Buggisch, W. (1991) Sample preparation effects on illite crystallinity measurements: Grain size gradation and particle orientation. Journal of Metamorphic Geoogy, 9, 671677.CrossRefGoogle Scholar
Linares, R. (1995) La Geología Ambiental de la depresión de Tremp-Isona (Pallars Jussà). PhD thesis. Publicaciones de la Universitat Autònoma de Barcelona. Edición microfotográfica, Barcelona.Google Scholar
López-Martínez, N., Ardévol, L., Arribas, M.E., Civis, J. & González-Delgado, A. (1998) The geological record in non-marine environments around the K/Pg boundary (Tremp Formation, Spain). Bulletin de la Société Géologique de France, 169, 11201135.Google Scholar
López-Martínez, N., Arribas, M.E., Robador, A., Vicens, E. & Ardévol, L. (2006) Los carbonatos danienses (Unidad 3) de la formación Tremp (Pirineos surcen-trales): paleogeografía y relación con el límite Cretácico-Terciario. Revista de la Sociedad Geológica de España, 19, 213255.Google Scholar
Lucas, J. (1962) La Transformation des Minéraux Argileux Dans la Sédimentation. Etudes sur les Argiles du Trias. Memoires du Service de la Carte Geologique Alsace-Lorraine, 23, 202 pp.Google Scholar
Mey, P.H.W., Nagtegaal, P.J.C., Robert, K.J. & Hartevelt, J.J.A. (1968) Lithostratigraphic subdivision of post-Hercynian deposits in the south-central Pyrenees, Spain. Leidse Geologische Mededelingen, 41, 21228.Google Scholar
Millot, G., Lucas, J. & Paquet, H. (1966) Evolution géochimique par dégradation et agradation des minéraux argileux dans l'hydrosphere. Geologische Rundschau, 55, 120.CrossRefGoogle Scholar
Moore, D.M. & Reynolds, R.C. (1989) X-ray Diffraction and the Identification and Analysis of Clay Minerals, 253 pp. Oxford University Press, New York.Google Scholar
Nagtegaal, P.J.C. (1972) Depositional history and clay minerals of the Upper Cretaceous basin in the South Central Pyrenees. Leidse Geologische Mededelingen, 47, 251275.Google Scholar
Nesbitt, H.W. & Young, G.M. (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299, 715717.CrossRefGoogle Scholar
Niskanen, E. (1964) Reduction of orientation effects in the quantitative X-ray diffraction analysis of kaolin minerals. American Mineralogist, 49, 705714.Google Scholar
Nordt, L., Atchley, S. & Dworkin, D. (2003) Terrestrial evidence for two greenhouse events in the latest Cretaceous. GSA Today, 13, 49.2.0.CO;2>CrossRefGoogle Scholar
Oms, O., Dinares-Turell, J., Vicens, E., Estrada, R., Vila, B., Galobart, A. & Bravo, A.M. (2007) Integrated stratigraphy from the Vallcebre Basin (south-eastern Pyrenees, Spain): New insights on the continental Cretaceous-Tertiary transition in southwest Europe. Palaeogeography, Palaeoclimatology, Palaeoecology, 255, 357.CrossRefGoogle Scholar
Oms, O., Marni, J., Vila, B., Sellés, A.G., Galobart, A., Estrada, R., Fontdevilla, V., Vicens, E., Riera V & Dinares-Turell, J. (2014) The Maastrichtian paleo-environmental record of the Tremp Formation (Southeastern Pyrenees, Iberian Peninsula). Pp. 12 in: Paleontologia i Evolució, Memòria Especial 7: Reconstructing the Terrestrial End-Cretaceous Palaeoenvironments in Europe (J. Marni, O. Oms, B. Vila, A. Galobart, R. Estrada & Dinares-Turell, J., editors). Tremp, Spain.Google Scholar
Oms, O., Fondevilla, V., Riera, V., Marmi, J., Vicens, E., Estrada, R., Anadón, P., Vila, B. & Galobart, A. (2016) Transitional environments of the lower Maastrichtian South-Pyrenean Basin (Catalonia, Spain): The Fumanya Member tidal flat. Cretaceous Research, 57, 428-42.CrossRefGoogle Scholar
Ortega Huertas, M., Martinez Ruiz, F., Palomo, I. & Chamley, H. (1995) Comparative mineralogical and geochemical clay sedimentation in the Betic Cordilleras and Basque-Cantabrian Basin areas at the Cretaceous Tertiary boundary. Sedimentary Geology, 94, 209227.CrossRefGoogle Scholar
Pansu, M. & Gautheyrou, J. (2006) Handbook of Soil Analysis. Mineralogical, Organic and Inorganic Methods, pp. 9496. Springer, New York.CrossRefGoogle Scholar
Rampino, M.R. & Reynolds, R.C. (1983) Clay mineralogy of the Cretaceous- Tertiary boundary clay. Science, 219, 495498.CrossRefGoogle ScholarPubMed
Riera, V., Anadon, P., Oms, O., Estrada, R. & Maestro, E. (2013) Dinosaur eggshell isotope geochemistry as tools of palaeoenvironmental reconstruction for the upper Cretaceous from the Tremp Formation (Southern Pyrenees). Sedimentary Geology, 294, 356370.CrossRefGoogle Scholar
Rosell, J. (1967) Estudio geológico del sector de Prepirineo comprendido entre los ríos Segre y Noguera Ribagorzana (Prov. de Lérida). Pirineos, 21, 9214.Google Scholar
Rosell, J., Linares, R. & Llompart, C. (2001) El “Garumniense” Prepirenaico. Boletín Sociedad Geoógica de España, 14, 4756.Google Scholar
Schmizt, B. & Pujalte, V. (2003) Sea-level, humidity, and land-erosion records across the initial Eocene thermal maximum from a continental-marine transect in northern Spain. Geology, 318, 689692.Google Scholar
Schulte, P., Alegret, L., Arenillas, I., Arz, J.A., Barton, P.J., Bown, P.R., Bralower, T.J., Christeson, J.L., Claeys, P., Cockell, C.S. et al. (2010) The Chicxulub asteroid impact and mass extinction at the Cretaceous-Palaeogene boundary. Science, 327, 12141218.Google Scholar
Simon-Coinçon, R., Thiry, M. & Schmitt, J.-M. (1997) Variety and relationships of weathering features along the early Tertiary palaeosurface in the south-western French Massif Central and the nearby Aquitaine Basin. Paleogeography Palaeoclimatology, Palaeoecology, 129, 5179.CrossRefGoogle Scholar
Singer, A. (1980) The paleoclimatic interpretation of clay minerals in soils and weathering profiles. Earth-Science Reviews, 15, 303326.CrossRefGoogle Scholar
Singer, A. (1984) The paleoclimatic interpretation of clay minerals in sediments: a review. Earth-Science Reviews, 21, 251293.CrossRefGoogle Scholar
Srodon, J. (1980) Precise identification of illite/smectite interstratifications by X-ray powder diffraction. Clays and Clay Minerals, 28, 401411.CrossRefGoogle Scholar
Srodon, J. (1984) X-ray powder diffraction identification of illitic materials. Clays and Clay Minerals, 32, 337349.CrossRefGoogle Scholar
Srodon, J. (2006) Identification and quantitative analysis of clay minerals. Pp. 765787 in: Handbook of Clay Science (F Bergaya, B.K.G. Theng & G. Lagaly, editors). Developments in Clay Science, Vol. 1, Elsevier, Amsterdam.CrossRefGoogle Scholar
Thiry, M. (2000) Palaeoclimatic interpretation of clay minerals in marine deposits: an outlook from the continental origin. Earth-Science Reviews, 49, 201221.CrossRefGoogle Scholar
Verges, L., Millá, H., Roca, E., Muñoz, J.A., Marzo, M., Cirés, L., Bezemer, T., Zoetemeijer, R. & Cloetingh, S. (1995) Eastern Pyrenees and related foreland basins: Presyn-and post-collisional crustal scale cross-sections. Marine and Petroleum Geology, 12, 903916.CrossRefGoogle Scholar
Warshaw, C. & Roy, R. (1961) Classification and scheme for the identification of layer silicates. Geological Society of America Bulletin, 72, 14551492.CrossRefGoogle Scholar
Wedepohl, K.H. (1995) The composition of the continental crust. Geochimica et Cosmochimica Acta, 59, 12171232.CrossRefGoogle Scholar
Zalasiewicz, J.A. & Williams, M. (2009) A geological history of climate change. Pp. 127142 in: Climate Change (T.M. Letcher, editor). Elsevier B.V., Oxford.CrossRefGoogle Scholar
Zarroca, M., Linares, R., Roqué, C., Rosell, J. & Gutiérrez, F. (2014) Integrated geophysical and morphostrati-graphic approach to investigate a coseismic (?) translational slide responsible for the destruction of Montclús village (Spanish Pyrenees). Landslides, 11, 655671.CrossRefGoogle Scholar
Supplementary material: File

Bastida et al. supplementary material

Supplementary Material

Download Bastida et al. supplementary material(File)
File 2.9 MB