Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-20T03:27:07.519Z Has data issue: false hasContentIssue false

Water sorption on Ca-saturated clays: II. Internal and external surfaces of montmorillonite

Published online by Cambridge University Press:  09 July 2018

E. C. Ormerod
Affiliation:
Rothamsted Experimental Station, Harpenden, Herts AL5 2JQ, UK
A. C. D. Newman
Affiliation:
Rothamsted Experimental Station, Harpenden, Herts AL5 2JQ, UK

Abstract

Water-sorption isotherms and interlamellar spacings were measured for Ca montmorillonite (from Redhill. UK) over the relative pressure range 1 > P/P0 > 0. By taking account of the change in interlamellar volume with relative pressure, it is shown that internal and external surfaces can be calculated by a modified t-plot analysis. The results also show that sorption on the external surfaces of the montmorillonite is quantitatively similar to that on reference oxide surfaces. Desorption-sorption hysteresis occurred and was apparently caused by an ageing process in which the interlamellar volume increased at the expense of the external surfaces.

Resume

Resume

On a mesuré les isothermes d'adsorption d'eau et les espacements interlamellaires d'une montmorillonite Ca de Redhill, G.B., pour l'tendue des pressions relatives 1 > P/P0 > 0. En tenant compte du changement de volume interlamellaire fonction de la pression relative, on peut montrer que les surfaces internes et externes peuvent être calculées par une analyse d'une courbe modifiée type t. Les résultats montrent également que l'adsorption sur les surfaces externes de la montmorillonite est quantitativement semblable á celle obtenue sur des surface d'oxydes de référence. On constate une hystérèse désorption-sorption qui est due apparemment à un processus de vieillissement au cours duquel le volume interlamellaire s'accroît, entraînant la diminution des surfaces externes.

Kurzreferat

Kurzreferat

An Ca-Montmorilloniten (Redhili, UK) wurden Wasser-Sorptionsisothermen und Schichtabstände in einem Bereicht des relativen Drucks von 1 > P/P0 > 0 gemessen. Unter Berücksichtigung der Veränderungen im Zwischenschichtvolumen mit dem Partialdruck wird gezeigt, daß die inneren und die äußeren Oberflächen durch eine modifizierte t-plot-Analyse berechnet werden können. Die Ergebnisse zeigen weiterhin, daß die Sorption an den äußeren Oberflächen von Montmorillonit quantitativ ähnlich der an Referenz-Oxidoberflächen ist. Bei den Untersuchungen trat eine Desorptions-Sorptions-Hysteresis auf, die anscheinend durch einen Alterungsprozeß hervorgerufen wurde, in welchem das Zwischenschichtvolumen auf Kosten deräußeren Oberfläche zunahm.

Resumen

Resumen

Se han determinado las isotermas de adsorción de agua y medido los espaciados interlaminares de una montmorillonita-Ca (Redhill, UK), en función de la presión relativa, en el rango 1 > P/P0 > 0. Teniendo en cuenta la variación del volúmen interlaminar con la presión relativa, es posible calcular las superfcies interna y externa mediante un anétlisis de las representaciones t. Los resultados también muestran que la adsorción sobre la superficie externa de la montmorilionita es cuantitativamente similar a la de las superficies de óxidos de referencia. El fenómeno de histéresis detectado parece que es debido a un proceso de envejecimiento en el cual el volúmen interlaminar aumenta a expensas de la superficie externa.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, D.M. & Low, P.F. (1958) The density of water adsorbed by Li-, Na- and K-bentonite. Soil Sci. Soc. Am. Proc. 22, 99103.Google Scholar
Branson, K. & Newman, A.C.D. (1983) Water sorption on Ca-saturated clays: I. Multilayer sorption and microporosity in some illites. Clay Miner. 18, 277287.CrossRefGoogle Scholar
Brown, G., Newman, A.C.D., Rayner, J.H. & Weir, A.H. (1978) The structures and chemistry of soil clay minerals. Pp. 29178 in: The Chemistry of Soil Constituents (Greenland, D. J. & Hayes, M. H. B., editors). John Wiley and Sons, Chichester, England.Google Scholar
Deeds, C.T. & van Olphen, H. (1961) Density studies on clay-liquid systems. I. The density of water adsorbed by expanding clays. Advances in Chemistry 33, 332339.Google Scholar
Ferreiro, E.A. & Helmy, A.K. (1971) Partial molal volumes of Ca-montmorillonite. Clay Miner. 9, 177184.Google Scholar
Glaeser, R. & Mering, J. (1968) Domaines d'hydration homogene des smectites. Compt. Rend. Acad. Sci. Paris, 267, Serie D, 463467.Google Scholar
Hagymassy, J., Brunauer, S. & Mikhail, R.S. (1969) Pore structure analysis by water vapour adsorption. I. t-curves for water vapour. J. Coll. Interface Sci. 29, 485491.CrossRefGoogle Scholar
Hall, P.L. (1981) Neutron scattering techniques for the study of clay minerals. Pp. 5175 in: Advanced Techniques for Clay Mineral Analysis (Fripiat, J. J., editor). Elsevier, Amsterdam, Holland.Google Scholar
Jurinak, J.J. (1963) Multilayer adsorption of water by kaolinite. Soil Sci. Soc. Am. Proc. 27, 269272.Google Scholar
Keenan, A.G., Mooney, R.W. & Wood, L.A. (1951) The relation between exchangeable ions and water adsorbed on kaolinite. J. phys. coll. Chem., 55, 14621474.Google Scholar
Lippens, B.C. & de Boer, J.H. (1965) Studies on pore systems in catalysts, Pt. V. The t-method. J. Catal. 4, 319323.CrossRefGoogle Scholar
MacEwan, D.M.C. & Wilson, M.J. (1980) Interlayer and intercalation complexes of clay minerals. Pp. 197248 in: Crystal Structures of Clay Minerals and their X-ray Identification (Brindley, G. W. & Brown, G., editors). Mineralogical Society, London.CrossRefGoogle Scholar
Mikhail, R.S., Guindy, N.M. & Hanafi, S. (1979) Vapor adsorption on expanding and non-expanding clay minerals. J. Coll. Interface Sci. 70, 282292.Google Scholar
Mooney, R.W., Keenan, A.C. & Wood, L.A. (1952) Adsorption of water by montmorillonite. J. Am. Chem. Soc. 74, 13671374.Google Scholar
Robinson, R.A. & Stokes, R.H. (1965) Electrolyte Solutions. Butterworths, London.Google Scholar
Roderick, G.L., Senich, D. & Demirel, T. (1969) X-ray diffraction and adsorption isotherm studies of the montmorillonite-water system. Proc. Int. Clay Conf. Tokyo, 659668.Google Scholar
Tarasevich, Yu. I., Orazmuradov, D.A. & Ovcharenko, F.D. (1971) On the thermodynamic investigation of the adsorption of water on montmorillonite. Dokl. Akad. Nauk, S.S.S.R. 196, 882884.Google Scholar
Weir, A.H. (1960) A study in the relationship between certain physical properties and structure and composition of montmorillonite group minerals. PhD Thesis, University of London.Google Scholar
Weir, A.H. (1965) Potassium retention in montmorillonites. Clay Miner. 6, 1722.CrossRefGoogle Scholar