Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T10:40:17.104Z Has data issue: false hasContentIssue false

The Vermiculitization of Trioctahedral Micas

I. The K Level and its Correlation with Chemical Composition

Published online by Cambridge University Press:  09 July 2018

J. M. Rousseaux
Affiliation:
Laboratoire de Physico-Chimie Minérale, Université Catholique de Louvain. Instimi des Sciences de la Terre, de Croylaan 42, 3030 Heverlee, Belgium
P. G. Rouxhet
Affiliation:
Laboratoire de Physico-Chimie Minérale, Université Catholique de Louvain. Instimi des Sciences de la Terre, de Croylaan 42, 3030 Heverlee, Belgium
L. A. Vielvoye
Affiliation:
Laboratoire de Physico-Chimie Minérale, Université Catholique de Louvain. Instimi des Sciences de la Terre, de Croylaan 42, 3030 Heverlee, Belgium
A. J. Herbillon
Affiliation:
Laboratoire de Physico-Chimie Minérale, Université Catholique de Louvain. Instimi des Sciences de la Terre, de Croylaan 42, 3030 Heverlee, Belgium

Abstract

The alteration of thirty-nine trioctahedral micas to vermiculite has been characterized by the K level, which is determined by repeated measurements of the stationary K concentration in the altering solution and provides a practical way of comparing the sensitivity to alteration. A calculated regression equation allows the K level of a sample to be predicted from its chemical composition. The model proposed for the alteration reaction outlines the physico-chemical meaning of the K level, with its experimental and theoretical limitations.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1973

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barshad, I. & Kishk, F.M. (1968) Science, 162, 1401.Google Scholar
Besson, H., Caillere, S. & Henin, S. (1968) Bull. Groupe Franc. Argiles, 20, 143.Google Scholar
Brown, G. & Newman, A.C.D. (1970) Clay Miner. 8, 273.Google Scholar
Crank, J. (1956) The Mathematics of Diffusion. Clarendon Press Oxford.Google Scholar
Foster, M.D. (1960) Prof. Pap. U.S. geol. Surv. 354-B.Google Scholar
Huang, P.M. & Jackson, M.L. (1967) Am. Miner. 52, 1503.Google Scholar
Juo, A.S.R. & White, J.L. (1969) Science, 165, 804.CrossRefGoogle Scholar
Leonard, R.A. & Weed, S.B. (1970) Clays Clay Miner. 18, 187.Google Scholar
Mackintosh, E.E. & Lewis, D.G. (1968) Trans. 9th Int. Congr. Soil Sci. II, 695.Google Scholar
Mackintosh, E.E., Lewis, D.G. & Greenland, D.J. (1971) Clays Clay Miner. 19, 209.Google Scholar
Mamy, J. (1970) Clays Clay Miner. 18, 157.Google Scholar
Newman, A.C.D. (1969) J. Soil Sci. 20, 357.CrossRefGoogle Scholar
Newman, A.C.D. & Brown, G. (1969) Nature, Lond. 223, 175.CrossRefGoogle Scholar
Norrish, K. (1972) Int. Clay Conf, Preprints II, 83.Google Scholar
Quirk, J.P. & Chute, J.H. (1968) Trans. 9th Int. Congr. Soil Sci. Il, 671.Google Scholar
Ralston, A. & Wilf, H.S. (1965) Méthodes Mathématiques pour Calculateurs Arithmétiques. Dunod, Paris.Google Scholar
Rausell-Colom, J.A., Sweatman, T.R., Wells, C.B. & Norrish, K. (1965) Experimental Pedology, (E. G. Hallsworth and D. V. Crawford, editors), p. 40. Butterworths, London.Google Scholar
Reichenbach, H. Graf Von (1972) Int. Clay Conf, Preprints U, 131.Google Scholar
Rousseaux, J.M., Nathan, Y., Vielvoye, L.A. & Herbillon, A. (1972) Int. Clay Conf, Preprints II, 121.Google Scholar
Rouxhet, P.G. (1970) Clay Miner. 8, 375.CrossRefGoogle Scholar
Schoenfelder, J. (1965) Mémoire, Conservatoire Nat. des Arts et Metiers, Mulhouse.Google Scholar
Scott, A.D. & Smith, S.J. (1966) Clays Clay Miner. 14, 69.Google Scholar
Wells, C.B. & Norrish, K. (1968) Trans. 9th Int. Congr. Soil Sci. II, 683.Google Scholar
Wey, R. (1972) Bull. Groupe Franc. Argiles, 24, 111.Google Scholar
Wey, R. & Le Dred, R. (1968) Bull. Groupe Franc. Argiles, 20, 55.CrossRefGoogle Scholar