Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-23T15:08:10.789Z Has data issue: false hasContentIssue false

Thermal history of Triassic sandstones from the Vosges Mountains-Rhine Graben rifting area, NE France, based on K-Ar illite dating

Published online by Cambridge University Press:  09 July 2018

N. Clauer*
Affiliation:
Centre de Géochimie de la Surface (CNRS-ULP), 1 rue Blessig, 67084 Strasbourg, France
N. Liewig
Affiliation:
Institut Pluridisciplinaire Hubert Curien, UMR 7178, 23 rue Becquerel, 67087 Strasbourg, France
B. Ledesert
Affiliation:
UMR7072, Département des Sciences de la Terre et de l'Environnement, Université de Cergy-Pontoise, 95031 Neuville-sur-Oise, France
H. Zwingmann
Affiliation:
CSIRO, Petroleum and John deLaeter Center of Mass Spectrometry, Curtin University, PO Box 1130, Bentley, WA 6102, Australia
*

Abstract

The thermal history of the Buntsandstein (Lower Triassic) sedimentary rocks that crop out in the Vosges Mountains, or are deeply buried in the Rhine Graben, was evaluated on the basis of a combined mineralogical, morphological, oxygen isotope and K-Ar-dating study of illite separates from five locations over a limited 120 km2 area. The results indicate a complex pre-rift evolution characterized by the following features: (1) in the northern Vosges, no record of diagenetic illite formation could be detected; (2) in the nearby Saverne rifting fracture-field, tectonic activity favoured the formation of faults in the crystalline basement ~210 Ma ago. This induced fluid migrations into the porous sandstone cover with illite precipitation occurring either repetitively over a period of ~25 Ma or as two separate events, the latter at ~185 Ma, affecting rocks to the east in the deeper part of the post-Eocene Upper Rhine Graben system; this latter stage of tectonic activity and fluid migration continued until 160 Ma, unless overprinted by another tectonic pulse at that time; (3) afterwards, the main tectonic activity moved to the Soultz-sous-Forêts area where two episodes could be identified at ~95 and 70 Ma by dating mineral crystallization; the latter illite age was also detected in more deeply buried Buntsandstein lithologies of the rift basin, west of Strasbourg, reflecting diverse crystallization under different physical and/or chemical conditions; (4) further illitization which at present is poorly constrained may have restarted ~55 My ago in the same deep part of the rift graben.

The youngest detected illitization age is clearly older than the main Miocene rifting episode of the Rhine Graben, suggesting that no illite crystallization occurred in the Buntsandstein sandstones during this tectonic event. This is explained by the fact that these rocks, as well as most of the underlying crystalline basement, were already sealed by fluid migration and mineralization during late Mesozoic rifting, and were therefore almost impermeable to the circulation of Tertiary fluids. The overall evolution of the region between the Vosges Mountains and the central Rhine Graben appears to be more complex than that of equivalent rock lithologies elsewhere in Western Europe. Several episodes identified here have been detected in other regions, but no single location exists which was affected by all events.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahrendt, H., Clauer, N., Hunziker, J.C. & Weber, K. (1983) Migration of folding and metamorphism in the Rheinisches Schiefergebirge deduced from K-Ar and Rb-Sr determinations. Pp. 323338 in: Intercontinental Fold Belts, Case Studies in the Variscan Belt of Europe and the Damara Belt in Namibia (Martin, H. & Eder, F.W., editors). Springer Verlag, Heidelberg.Google Scholar
Alexandrov, P., Royer, J.J. & Deloule, E. (2001) 331±9 Ma emplacement age of the Soultz monzogranite (Rhine Graben basement) by U/Pb ion-probe zircon dating of samples from 5 km depth. Comptes Rendus de l'Académie des Sciences, 332, 747754.Google Scholar
André, A.S., Sausse, J. & Lespinasse, M. (2001) New approach for the quantification of paleostress magnitudes: application to the Soultz vein system (Rhine Graben, France). Tectonophysics, 336, 215231.Google Scholar
Bartier, D., Ledésert, B., Clauer, N., Meunier, A., Liewig, N., Morvan, G. & Addad, A. (2008) Hydrothermal alteration of the Soultz-sous-Forets granite (Hot Fractured Rock geothermal exchanger) into a tosudite and illite assemblage. European Journal of Mineralogy, 20, 131142.CrossRefGoogle Scholar
Bonhomme, M.G., Thuizat, R., Pinault, Y., Clauer, N., Wendling, A. & Winkler, R. (1975) Méthode de datation Potassium-Argon. Appareillage et technique. Institute of Geology, Strasbourg.Google Scholar
Brockamp, O., Clauer, N. & Zuther, M. (2003) Authigenic sericite record of a fossil geothermal system: the Offenburg trough, central Black Forest, Germany. International Journal of Earth Science, 92, 843851.Google Scholar
Cathelineau, M., Fourcade, S., Clauer, N., Buschaert, S., Rousset, D., Boiron, M.C., Meunier, A., Lavastre, V. & Javoy, M. (2004) Dating multistage paleofluid percolations: A K-Ar and 18O study of fracture illites from altered Hercynian plutonites at the basement/cover interface (Poitou High, France). Geochimica et Cosmochimica Ada, 68, 25292542.Google Scholar
Clauer, N. (1981) Strontium and argon isotopes in naturally weathered biotites, muscovites and feldspars. Chemical Geology, 31, 325334.CrossRefGoogle Scholar
Clauer, N., O'Neil, J.R. & Furlan, S. (1995) Clay minerals as records of temperature conditions and duration of thermal anomalies in the Paris Basin, France. Clay Minerals, 30, 113.Google Scholar
Clauer, N. & Chaudhuri, S. (1995) Clays in Crustal Environments. Isotope Dating and Tracing. Springer Verlag, Heidelberg, 359 pp.CrossRefGoogle Scholar
Clauer, N., Zwingmann, H. & Chaudhuri, S. (1996) Isotope (K-Ar and oxygen) constraints on the extent and importance of the Liassic hydrothermal activity in Western Europe. Clay Minerals, 31, 301318.Google Scholar
Clauer, N. & Chaudhuri, S. (1998) Isotopie dating of very low-grade metasedimentary and metavolcanic rocks: techniques and methods. Pp. 202226 in: Low- Grade Metamorphism (Frey, M. & Robinson, D., editors). Blackwell Science, Oxford, UK.Google Scholar
Clayton, R.N. & Mayeda, T.K. (1963) The use of bromide pentafluoride in the extraction of oxygen in silicates for isotopie analysis. Geochimica et Cosmochimica Ada, 27, 4352.Google Scholar
Cocherie, A., Guerrot, C., Fanning, C.M. & Genter, A. (2004) Datation U—Pb des deux facies du granite de Soultz (Fosse rhenan), France. Comptes Rendus Geosdences, 336, 775787.Google Scholar
Dèzes, P., Schmid, S.M. & Ziegler, P.A. (2004) Evolution of the Alpine and Pyrenean orogens with their foreland lithosphere. Tectonophysics, 389, 133.CrossRefGoogle Scholar
Edel, J.B., Schulmann, K. & Rotstein, Y. (2007) The Variscan tectonic inheritance of the Upper Rhine Graben: evidence of reactions in the Lias, Late Eocene-Oligocene up to the recent. International Journal of Earth Science, 96, 305325.Google Scholar
Elliott, W.C. & Aronson, J.L. (1987) Alleghanian episode of K-bentonites illitization in the southern Appalachian Basin. Geology, 15, 735739.Google Scholar
Gall, J.C. (1971) Faunes et paysages du Grès à Voltzia du Nord des Vosges. Essai paléoécologique sur le Buntsandstein supérieur. Mémoires de la Carte Géologique d'Alsace et de Lorraine, 34, 318.Google Scholar
Genter, A., Traineau, H., Ledesert, B., Bourgine, B. & Gentier, S. (2000) Over 10 years of geological investigations within the HDR Soultz project, France. In: Proceedings of the World Geothermal Congress 2000. Kyushu-Tohoku, Japan.Google Scholar
Geyer, O.F. & Gwinner, M.P. (1991) Geologie von Baden-Wiirttemberg. 4. Einführung in die Geologie von Baden-Wiirttemberg, Schweizerbart, Stuttgart, 482.Google Scholar
Gaupp, R., Matter, A., Platt, F., Ramseyer, K. & Walzebruck, J. (1993) Diagenesis and fluid evolution of deeply buried Permian (Rotliegende) gas reservoirs, Northwest Germany. American Association of Petroleum Geologists Bulletin, 73, 11111128.Google Scholar
Glasmann, J.R., Lundegard, P.D., Clark, R.A., Penny, B.K. & Collins, I.D. (1989) Geochemical evidence for the history of diagenesis and fluid migration: Brent sandstone, Heather Field, North Sea. Clay Minerals, 24, 255284.Google Scholar
Gustafson, L.B. & Curtis, L.W. (1983) Post Kombolgie metasomatism at Jabiluka, Northern Territory, Australia, and its significance in the formation of high grade uranium mineralization in lower Proterozoic rocks. Economic Geology, 35, 2656.Google Scholar
Halliday, A.N., Ohr, M., Mezger, K., Chesley, J.T., Nakai, S. & Dewolf, C.P. (1991) Recent developments in dating ancient crustal fluids. Reviews of Geophysics, 29, 577584.CrossRefGoogle Scholar
Hamilton, P.J., Kelley, S. & Fallick, A.E. (1989) K-Ar dating of illite in hydrocarbon reservoirs. Clays and Clay Minerals, 24, 215231.Google Scholar
Hamilton, P.J., Giles, M.R. & Ainsworth, P. (1992) K-Ar dating of illites in Brent Group reservoirs: a regional perspective. Pp. 377400 in. Geology of the Brent Group (Morton, A.C., Haszeldine, R.S., Giles, M.R. & Brown, S., editors). Special Publication 61, The Geological Society, London.Google Scholar
Hagedorn, B. & Lippolt, H.J. (1994) Isotopische Alter von Zerriitungszonen als Alterschranken der Freiamt-Sexau-Mineralisation (Mittlerer Schwarzwald). Abhandlungen der Geologie des Landesamt Baden-Wurtenberg, 14, 205219.Google Scholar
Hunziker, J.C., Frey, M., Clauer, N., Dallmeyer, R.D., Friedrichsen, H., Flehmig, W., Hochstrasser, K., Roggwiller, P. & Schwander, H. (1986) The evolution of illite to museovite: mineralogieal and isotopie data from the Glarus Alps, Switzerland. Contributions to Mineralogy and Petrology, 92, 157180.Google Scholar
lilies, J.H. & Fuchs, K. (eds) (1974) Approaches to Taphrogenesis. Schweizerbart, Stuttgart, 460 pp.Google Scholar
Jeannette, D., Clauer, N., Fritz, B. & Liewig, N. (1985) Les séries gréseuses du Buntsandstein de Plombières-les-Bains (Vosges) et du sondage géothermique de Cronenbourg (Bas-Rhin): Comparaisons pétrographiques, minéralogiques et géochimiques. Colloque ‘Bilan et Perspectives de la Recherche francaise en Géothermie”, Orléans, June 12-13 1985, 2 pp.Google Scholar
Kotzer, T.G. & Kyser, T.K. (1995) Petrogenesis of the Proterozoic Athabasca basin, Northern Saskatchewan, Canada, and its relation to diagenesis, hydrothermal uranium mineralization and paleohydrogeology. Chemical Geology, 120, 4589.Google Scholar
Lee, M.C., Aronson, J.L. & Savin, S.M. (1989) Timing and conditions of Permian Rotliegendes sandstone diagenesis, southern North Sea: K/Ar and oxygen isotope data. American Association of Petroleum Geologists Bulletin, 73, 195215.Google Scholar
Lerman, A. & Clauer, N. (2005) Losses of radiogenic 40Ar in the fine-clay size fractions of sediments. Clays and Clay Minerals, 53, 233248.Google Scholar
Lerman, A., Ray, B.M. & Clauer, N. (2007) Radioactive production and diffusional loss of radiogenic 40Ar in clays in relation to its flux to the atmosphere. Chemical Geology, 243, 205224.Google Scholar
Liewig, N. (1993) Datation isotopique d'illites et diagenèse de grès réservoirs à gaz, huile et eau du Nord-Ouest de VEurope. Implications pétrogénétiques et géodynamique. PhD thesis, University of Strasbourg, 238 pp.Google Scholar
Liewig, N. & Clauer, N. (2000) K-Ar dating of varied microtextural illite in Permian gas reservoirs, northern Germany. Clay Minerals, 35, 271281.Google Scholar
Liewig, N., Clauer, N. & Sommer, F. (1987) Rb-Sr and K-Ar dating of clay diagenesis in a Jurassic sandstone oil reservoir, North Sea. American Association of Petroleum Geologists Bulletin, 71, 14671474.Google Scholar
Lippolt, H.J. & Seibel, W. (1991) Evidence for multistage alteration of Schwarzwald lamprophyres. European Journal of Mineralogy, 3, 587601.Google Scholar
Lippolt, H.J. & Kirsch, H. (1994) Isotopic investigation of post-Variscan plagioclase sericitization in the Schwarzwald gneiss massif. Chemie der Erde, 54, 179198.Google Scholar
McClay, K.R. (1995) The geometries and kinematics of inverted fault systems: a review of analogue model studies. Pp. 97118 in: Basin Inversion (Buchanan, J.G. & Buchanan, P.G., editors). Special Publication 8, The Geological Society, London.Google Scholar
Meyer, M., Brockamp, O., Clauer, N., Renk, A. & Zuther, M. (2000) Further evidence for a Jurassic mineralizing event in central Europe: K-Ar dating of the hydrothermal alteration and fluid inclusion systematics in wall rocks of the Kafersteige fluorite-vein deposit in Northern Black Forest, Germany. Mineralium Deposita, 35, 754761.Google Scholar
Nier, A.O. (1950) A redetermination of the relative abundances of the isotopes of carbon, nitrogen, oxygen, argon and potassium. Physics Reviews, 77, 789793.Google Scholar
Odin, G.S. (1982) Interlaboratory standards for dating purposes. Pp. 123149 in: Numerical dating in Stratigraphy (Odin, G.S., editor). John Wiley & Sons, Chichester, UK.Google Scholar
Pevear, D.R. (1999) Illite and Hydrocarbon Exploration. Proceedings of the National Academy of Science of the United States of America, 96, 34403446.Google Scholar
Person, M., Raffensperger, J.P., Ge, S. & Garven, G. (1996) Basin-scale hydrogeologic modeling. Reviews in Geophysics, 34, 6187.Google Scholar
Platt, J.D. (1993) Controls on clay mineral distribution and chemistry in the Early Permian Rotliegend of Germany. Clay Minerals, 28, 393416.CrossRefGoogle Scholar
Prodehl, C., Mueller, S. & Haak, V. (1995) The European Cenozoic rift system. Pp. 133212 in: Continental Rifts: Evolution, Structure, Tectonics (Olsen, K.H., editor). Developments in Geotectonics, 25. Elsevier, New York.Google Scholar
Rothe, J.P. & Sauer, K. (eds) (1967) The Rhinegraben progress report 1967. Abhandlungen des Geologischen Landesamtes in Baden-Wurttemberg, 6, 146 pp.Google Scholar
Savin, S.M. & Lee, M. (1988) Isotopic studies of phyllosilicates. Pp. 189224 in: Hydrous Phyllosilicates (Exclusive of Micas) (Bailey, S.W., editor). Reviews in Mineralogy, Mineralogical Society of America, Washington, D.C. CrossRefGoogle Scholar
Sasseville, C., Tremblay, A., Clauer, N. & Liewig, N. (2007) K-Ar time constraints on the evolution of polydeformed fold-and-thrust belts: the case of the Northern Appalachians (southern Quebec). Journal ofGeodynamics, 45, 99119.Google Scholar
Schaltegger, U., Zwingmann, H., Clauer, N., Larqué, P. & Stille, P. (1995) K-Ar dating of a Mesozoic hydrothermal activity in Carboniferous to Triassic clay minerals of northern Switzerland. Schweizerische Mineralogische und Petrographische Mitteilungen, 75, 163176.Google Scholar
Schlegel, A., Brockamp, O. & Clauer, N. (2007) Response of clastic sediments to episodic hydrothermal fluid flows in intramontane troughs: A case study from Black Forest. European Journal of Mineralogy, 19, 833848.Google Scholar
Schleicher, A., Warr, L.N., Kober, B., Laverret, E. & Clauer, N. (2006) Episodic mineralization of hydrothermal illite in the Soultz-sous-Forets granite (Upper Rhein Graben, France). Contributions to Mineralogy and Petrology, 152, 349364.Google Scholar
Schumacher, M.E. (2002) Upper Rhine Graben: role of preexisting stuctures during rift evolution. Tectonics, 21, 117.Google Scholar
Steiger, R.H. & Jäger, E. (1977) Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters, 36, 359362.Google Scholar
Środoń, J., Clauer, N., Banas, M. & Wojtowicz. (2006a) K-Ar evidence for a Mesozoic thermal event super-imposed on burial diagenesis of the Upper Silesia Coal Basin. Clay Minerals, 41, 669690.Google Scholar
Środoń, J., Kotarba, M., Biron, A., Such, P., Clauer, N. & Wojtowicz, A. (2006b) Diagenetic history of the Podhale-Orava Basin and the underlying Tatra sedimentary structural units (Western Carpathians): Evidence from XRD and K-Ar of illite-smectite. Clay Minerals, 41, 751774.Google Scholar
Timar-Geng, Z., Fiigenshuh, B., Schaltegger, U. & Wetzel, A. (2004) The impact of the Jurassic hydrothermal activity on zircon fission track data from the southern Upper Rhine Graben area. Schweizerische Mineralogische und Petrographische Mitteilungen, 84, 257269.Google Scholar
Timar-Geng, Z., Fügenschuh, B., Wetzel, A. & Dresmann, H. (2006) Low-temperature thermochronology of the flanks of the southern Upper Rhine Graben. International Journal of Earth Science, 95, 685702.Google Scholar
Vidal, P. & Hameurt, J. (1972) Preliminary results on the age and origin of the Middle Vosges granites. Fortschritte Mineralogie, 50, 135137.Google Scholar
Wernicke, B.P. (1985) Uniform-sense normal simple shear of the continental lithosphere. Canadian Journal of Earth Sciences, 22, 108125.Google Scholar
Wernicke, R.S. & Lippolt, H.J. (1997) (U+Th)-He evidence of Jurassic continuous hydrothermal activity in the Schwarzwald basement, Germany. Chemical Geology, 138, 273285.Google Scholar
Williams, G.D., Powell, C.M. & Cooper, M.A. (2002) Geometry and kinematics of inversion tectonics. Pp. 249261 in: Extensional Tectonics; Regional-scale Processes (Holdsworth, R.E. & Turner, J.P., editors). Special Publication 2, The Geological Society, London.Google Scholar
Zuther, M. & Brockamp, O. (1988) The fossil geothermal system of the Baden-Baden trough (Northern Black Forest, Germany). Chemical Geology, 71, 337353.Google Scholar
Zwingmann, H., Clauer, N. & Gaupp, R. (1998) Timing of fluid flow in a sandstone reservoir of the North-German Rotliegend (Permian) by K-Ar dating of related hydrothermal illite. Pp. 91106 in. Dating and Duration of Fluid Flow Events (Parnell, J., editor). Special Publication 144, The Geological Society, London.Google Scholar
Zwingmann, H., Clauer, N. & Gaupp, R. (1999) Structure-related geoehemieal (REE) and isotopie (K-Ar, Rb-Sr, δ18O) characteristics of clay minerals from Rotliegend sandstone reservoirs (Permian, Northern Germany). Geochimica et Cosmochimica Ada, 63, 28052823.Google Scholar