Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-24T17:19:04.779Z Has data issue: false hasContentIssue false

Structural transformations of kaolins into (Ni, Al) serpentine-like phases and subsequently into trioctahedral micas under hydrothermal conditions

Published online by Cambridge University Press:  09 July 2018

V. A. Frank-Kamenetskii
Affiliation:
Department of Crystallography, Leningrad State University, University Embankment 7/9, Leningrad V-034 USSR 199034
E. A. Goilo
Affiliation:
Department of Crystallography, Leningrad State University, University Embankment 7/9, Leningrad V-034 USSR 199034
N. V. Kotov
Affiliation:
Department of Crystallography, Leningrad State University, University Embankment 7/9, Leningrad V-034 USSR 199034
M. Rieder
Affiliation:
Institute of Geological Sciences, Charles University, Albertov 6, 12843 Praha 2, Czechoslovakia

Extract

It has been shown that clay minerals transform into (Mg, Al) or (Ni,Al) serpentine-like phases if treated hydrothermally in the presence of MgCO3 or NiCO3 (Shitov et al., 1974, Frank-Kamenetskii et al., 1978, 1983a,b; Kotel'nikova et al., 1976; Varela et al., 1983; Kotov et al., 1985; Ryumin et al., 1978) and that the polytypism of the initial kaolins is inherited by the products. It has also been shown that (Mg,Al) serpentine-like phases react with KC1 to form dioctahedral micas and Mg-rich serpentine phases, but the latter do not react to trioctahedral micas (Kotel'nikova et al., 1976). Consequently, it was desirable to look for mechanisms for obtaining trioctahedral micas from serpentine-like phases.

Type
Note
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bailey, S.W. (1969) Polytypism of trioctahedral 1:1 layer silicates. Clays Clay Miner., 17, 355–371.Google Scholar
Frank-Kamenetskii, V. A., Kotov, N. V. & Goilo, E.A. (1983a) Structural Transformations of Layer Silicates at Elevated p,T Parameters., 151 pp. Nedra Publishers, Leningrad (in Russian).Google Scholar
Frank-Kamenetskii, V.A., Kotov, N.V. & Ryumin, A.A. (1978) Phase and structural transformations of muscovite into trioctahedral layer silicates. Pp. 211221 in: Problemy Petrologii Zemnoi Kory i Verkhnei Mantii.Nauka Publishers, Novosibirsk (in Russian).Google Scholar
Frank-Kamenetskii, V.A., Kotov, N.V., Varela, Kh. de, D. & Shitov, V.A. (1983b) Structural transformations of montmorillonite and illite in the presence of NiC03 under hydrothermal conditions. Pp. 134145 in : Problemy Kristallokhimii i Genezisa Mineralov. Nauka Publishers, Leningrad (in Russian).Google Scholar
Kotel'nikova, E.N., Kotov, N.V. & Frank-Kamenetskii, V.A. (1976) On structural transformations in the series, kaolins-7 A (Al,Mg)-serpentines-dioctahedral potassium micas, under hydrothermal conditions. Pp. 2433 in: Kristallokhimiya i Strukturnye Osobennosti Mineralov. Nauka Publishers, Leningrad (in Russian).Google Scholar
Kotov, N.V., Gorshkov, A.I., Sivtsov, A.V. & Varela, M.Kh. de D. (1985) Transformation of illite into a Ni,Al-serpentine-like phase in the presence of NiCO3 at elevated PH2O, T-parameters. Mineralog. zh., 7, 63–66 (in Russian).Google Scholar
Kotov, N.V. & Kopeikin, N.N. (1972) Apparatus for, and some aspects of, experiments at high temperatures and pressures. II. Device for hydrothermal studies at PH2O = 2000 kg/cm2 and T up to 850°C. Vestn. Leningr. Urtiv. Ser. Geol. Geogr., 2, 139–143 (in Russian).Google Scholar
Kotov, N.V., Soboleva, S.V., Goilo, E.A., Zvyagin, B.B. & Frank-Kamenetskii, V.A. (1980) Structural inheritance in the course of formation of mica after kaolins under hydrothermal conditions. Izv. Akad. nauk SSSR Ser. Geol., 12, 68–80 (in Russian).Google Scholar
Ryumin, A.A., Kotov, N.V., Tomilov, S.B., Krasnova, N.I. & Frank-Kamenetskii, V.A. (1978) The question of structural positioning of iron during sequential alterations of micas and chlorites. Pp. 4752 in: Problemy Izomorfizma. Kazan’Univ. Publishers, Kazan’ (in Russian).Google Scholar
Shitov, V.A., Kotov, N.V. & Nguen, Tat Cham (1974) Structural inheritance during transformations of kaolins into serpentine under pressure. DokL AN SSSR, 216, 633–636 (in Russian).Google Scholar
Varela, Kh. de D., Kotov, N.V. & Frank-Kamenetskii, V.A. (1983) Hydrothermal transformations of kaolins in Ni chloride and carbonate systems. Pp. 9094 in: Novye Idei v Geneticheskoi Mineralogii. Nauka Publishers, Leningrad (in Russian).Google Scholar
Weiss, Z. & Ďurovič, S. (1984) A unitary geometrical theory of polytypism of phyllosilicates. Pp. 7374 in: Int. Conf. Crystal Growth & Characterization of Polytype Structures, Collected Abstracts, Marseille. Google Scholar
Zvyagin, B.B., Mishchenko, K.S. & Shitov, V.A. (1965) Ordered and disordered polymorphic modifications of serpentine minerals and their identification. Kristallografiya, 10, 635–643 (in Russian).Google Scholar
Zvyagin, B.B., Mishchenko, K.S. & Shitov, V.A. (1966) The investigation of polymorphic modifications of serpentine minerals by electron diffraction. Pp. 130137 in: Fizicheskie Metody Issledovaniya Mineralov Osadochnykh Porod. Nauka Publishers, Moskva (in Russian).Google Scholar