Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-23T16:11:06.516Z Has data issue: false hasContentIssue false

The rheological and colloidal properties of bentonite dispersions in the presence of organic compounds: I. Flow behaviour of sodium-bentonite in water-alcohol

Published online by Cambridge University Press:  09 July 2018

T. Permien
Affiliation:
Institute of Inorganic Chemistry, Kiel University, Olshausenstraβe 40, D-24098 Kiel, Germany
G. Lagaly
Affiliation:
Institute of Inorganic Chemistry, Kiel University, Olshausenstraβe 40, D-24098 Kiel, Germany

Abstract

Addition of methanol, ethanol, and n-propanol to aqueous dispersions of Namontmorillonite (2% w/w) reduces the apparent viscosity and the yield value. In the presence of NaCl the flow parameters increase to a maximum at medium alcohol concentration. Thus, the gel strength of Nabentonite dispersions can greatly change with the alcohol content of the dispersion. This is probably caused by the transition of dispersed clay mineral particles (individual silicate layers or lamellae of a few of these layers) to band-type networks with optical homogeneity and weakly attractive particle-particle interaction. When attraction between the particles becomes too strong at high alcohol concentrations, the bands are condensed to short fragments and, eventually, freely moving particles, reducing the viscosity and the yield value.

The interparticle interaction energy is calculated for the constant charge model by van Olphen's (1977) method. Agreement with the experimental results is only obtained when the Stern layer adsorption is governed by a specific adsorption energy μ, which increases with decreasing dielectric constant.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akerlöf, G. (1932) Dielektrizitatskonstanten von Wasser/ Alkohol-Germischen.7. Am. Chem. Soc. 54, 4125–1139.Google Scholar
Barclay, L.M., Harrington, A. & OTTEWIU. R.H. (1972) Measurement of forces between particles in disperse systems. Kolloid-Z.Z. Polym. 250, 655666.Google Scholar
Barrow, G.M. (1983) Physikalische Chemie. (5 ed.), part II, 289 pp. Verlag Bohmann und Vieweg, Wien.Google Scholar
Brandenburg, U. & Lagaly, G. (1988) Rheological properties of sodium montmorillonite dispersions. Appl. Clay Sci. 3, 263279.Google Scholar
Callaghan, I.C. & Ottewill, R.H. (1974) Interparticle forces in montmorillonite gels. Disc. Faraday Soc. 57, 110118.Google Scholar
Chan, D.Y.C, Pashley, R.M. & Quirk, J.P. (1984) Surface potentials derived from co-ion exclusion measurements on homoionic montmorillonite and illite. Clays Clay Miner. 32, 131138.Google Scholar
Chen, S., Low, P.F., Cushman, J.H. & Roth, C.B. (1987) Organic compound effects on swelling and flocculation of Upton montmorillonite. Soil Sci. Soc. Am. J. 51, 14441450.Google Scholar
Chheda, P., Grasso, D. & Van Oss, C.J. (1992) Impact of ozone on stability of montmorillonite suspensions. J. Colloid Interface Sci. 153, 226236.Google Scholar
Dékány, I. (1993) Thermodynamic properties of the S/L interfacial layer: stabilization of the colloidal system in binary liquids. Pure Appl. Chem. 65, 901906.CrossRefGoogle Scholar
De Rooy, N., De Bruyn, P.L. & Overbeek, J.Th. (1980) Stability of dispersions in polar organic media. I. Electrostatic stabilization. J. Colloid Interface Sci. 75, 542554.Google Scholar
Fitzsimmons, R.F., Posner, A.M. & Quirk, J.P. (1970) Electron microscopic and kinetic study of the flocculation of calcium montmorillonite. Israel J. Chem. 8, 301314.Google Scholar
Güven, N. (1992a) Rheological aspects of aqueous smectite suspensions. Pp. 81-126 in: Clay-Water Interface and its Rheological Implications (Güven, N. & Pollastro, R.M., editors). CMS Workshop Lectures Vol. 4. The Clay Mineral Soc, Boulder, Colorado.Google Scholar
Güven, N. (1992b) Molecular aspects of clay-water interactions. Pp. 2-79 in: Clay-Water Interface and its Rheological Implications (Güven, N. & Pollastro, R.M., editors). CMS Workshop Lectures, Vol. 4. The Clay Mineral Soc. Boulder, Colorado.Google Scholar
Hasenpatt, R., Degen, W. & Kahr, G. (1989) Flow and diffusion in clays. Appl. Clay Sci. 4, 179192.Google Scholar
Israelachvilli, T.N. (1985) Intermolecular and Surface Forces. Academic Press, London.Google Scholar
Jasmund, K. & Lagaly, G. (1993) Tonminerale und Tone— Slruktur, Eigenschaften, Anwendung und Einsatz in Industrie und Umwelt. Steinkopff-Verlag, Darmstadt.Google Scholar
Jepson, W.B. (1984) Kaolins: their properties and uses. Phil. Trans. Soc. Lond. A311, 411-32.Google Scholar
Krupp, H., Schnabel, W. & Walter, G. (1972) The Lifshitzvan der Waals constant on the basis of optical data. J. Colloid Interface Sci. 39, 421–123.Google Scholar
Lagaly, G. (1981) Characterization of clays by organic compounds. Clay Miner. 16, 121.CrossRefGoogle Scholar
Lagaly, G. (1989) Principles of flow of kaolin and bentonite dispersions. Appl. Clay Sci. 4, 105123.Google Scholar
Lagaly, G. (1993) Praktische Verwendung und Einsatzmoglichkeiten von Tonen. Pp. 358-127 in: Tonminerale und Tone. Struktur, Eigenschaften, Anwendung und Einsatz in Industrie und Technik (Jasmund, K. & Lagaly, G., editors). Steinkopff-Verlag, Darmstadt.Google Scholar
Lagaly, G. (1994) Layer charge determination by alkylammonium ions. Pp. 1-46 in: Charge Characteristics of 2:1 Clay Minerals (Mernut, A., editor). CMS Workshop Lectures, Vol. 6. The Clay Mineral Soc, Boulder, Colorado.Google Scholar
Low, P.F. (1987) The clay-water interface. Proc. Int. Clay Conf, Denver, 247-256.Google Scholar
Low, P.F. (1992) Interparticle forces in clay suspensions: flocculation, viscous flow and swelling. Pp. 158-190 in: Clay-Water Interface and its Rheological Implications (Güven, N. & Pollastro, R.M., editors). CMS Workshop Lectures, Vol. 4. The Clay Mineral Soc, Boulder, Colorado.Google Scholar
Lubetkin, S.D., Middleton, S.R. & Ottewill, R.H. (1984) Some properties of clay-water dispersions. Phil. Trans. R. Soc. London, A311, 353-368.Google Scholar
Lyklema, J. & De Wit, J.N. (1975) The electrical double layer on silver iodide in water + ethylene glycol mixtures. II. Inner layer properties and their relation to sol stability. J. Electroanal. Chem. 65, 443452.Google Scholar
Lyklema, J. & De Wit, J.N. (1978) Colloid stability of silver iodide in water ethylene glycol mixtures. Colloid Polymer Sci. 256, 11101120.Google Scholar
Manfredini, T., Pellacani, G.C., Pozzi, P. & Corradi, A.B. (1990) Monomeric and oligomeric phosphates as deflocculants of concentrated aqueous clay suspensions. Appl. Clay Sci. 5, 193201.Google Scholar
Miller, S.E. & Low, P.F. (1990) Characterization of the electrical double layer of montmorillonite. Langmuir 6, 572578.Google Scholar
Neumann, B.S. & Sansom, K.G. (1970) Laponite clay—a synthetic inorganic gelling agent for aqueous solutions of polar organic compounds. J. Soc. Cosmt. Chem. 21, 237258.Google Scholar
Norrish, K. (1954) The swelling of montmorillonite. Disc. Farad. Soc. 18, 120134.Google Scholar
Novich, B.E. & Ring, T.A. (1984) Colloid stability of clays using photon correlation spectroscopy. Clays Clay Miner. 32, 400406.Google Scholar
Osmond, D.W.J., Vincent, B. & Waite, F.A. (1973) The van der Waals attraction between colloidal particles having adsorbed layers. I. A reappraisal of the ‘Void effect'. J. Colloid Interface Sci. 42, 262269.Google Scholar
Ottewill, R.H. (1977) Stability and instability in disperse systems. J. Colloid Interface Sci. 58, 357373.Google Scholar
Rand, B., Pecenc, E., Goodwin, J.W., & Smith, R.W. (1980) Investigation into the existence of edge-face coagulated structures in Na-montmorillonite suspensions. J. Chem. Soc. Faraday, I. 76, 25235.Google Scholar
Samii, A.M. & Lagaly, G. (1987) Adsorption of nuclein bases on smectites. Proc. Int. Clay Conf. Denver, 363-369.Google Scholar
Shaw, D.J. (1980) Introduction to Colloid and Surface Chemistry. Third edition. Butterworths, London.Google Scholar
Sun, V., Lin, H. & Low, P.F. (1986) The non specific interaction of water with the surfaces of clay minerals. J. Colloid Interface Sci. 112, 556564.Google Scholar
Triboth, H. & Lagaly, G. (1986) Aufbereitung und Identifizierung von Boden- und Lagefstattentonen. Git Fachz. 1Mb. 30, 524-^529, 771776.Google Scholar
Vali, H. & Bachmann, L. (1988) infrastructure and flow behaviour of colloidal clay dispersion. J. Colloid Interface Sci. 126, 278291.Google Scholar
Van Olphen, H. (1977) An Introduction to Clay Colloid Chemistry, J. Wiley & Sons, New York.Google Scholar
Van Oss, C.J., Giese, R.F, & Costanzo, P.M. (1990) DLVO and non-DLVD interactions in hectorite. Clays Clay Miner. 38, 151159.Google Scholar
Verwey, E.J.W. & Overbeek, J.TH.G. (1948) Theory of the Stabitity of Lyophob'ic Colloids. Elsevier Publ. Cornp. Amsterdam.Google Scholar
Vincent, B. (1973) The van der Waals attraction between colloidal particles having adsorbed layers. II. Calculation of interaction Curves. J. Colloid Interface Sci. 42, 270285.Google Scholar
Vincent, B., Luckham, P.F. & Waite, F.A. (1980) The effect of free polymer on the stability of sterically stabilized dispersions. J. Colloid Interface Sci. 73, 508521.Google Scholar
Vincent, B., Kiraly, Z., Emmett, S. & Beaver, A. (1990) The stability of silica dispersions in ethanol/cyclohexane mixtures. Colloids Surface 49, 121132.Google Scholar
Vold, M. (1961) The effect of adsorption on the van der Waals interaction of spherical colloidal particles. LCottoidSci, 16, 112.Google Scholar
Weiss, A. (1962) Neuere Untersuchungen iiber die Struktur thixotroper Gele. Rheologica Acta 2, 292304.Google Scholar
Weiss, A. & Frank, R. (1961) Uber den Bau der Geruste in thixotropen Gelen. Z. Naturforsch. 16, 141142.Google Scholar
Welzen, J.T.A.M., Stein, H.N., Stevels, J.M. & Siskens, C.A.M. (1981) The influence of surface-active agents on kaolinite. J. Colloid Interface Sci. 81, 455–167.Google Scholar