Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T03:53:51.388Z Has data issue: false hasContentIssue false

Relationships between composition and structure in Fe-rich smectites

Published online by Cambridge University Press:  09 July 2018

Maria Franca Brigatti*
Affiliation:
Istituto di Mineralogica e Petrologia dell'Università, Piazza S. Eufemia 19, 41.100—Modena, Italy

Abstract

Chemical and crystallochemical properties of natural dioctahedral Fe-rich smectites formed by weathering of basaltic rocks in the Berici-Euganei Area, northern Italy, were investigated. It was found that: (i) the b-dimension could be correlated both to Fe3+/Σ ratio (Σ = octahedral occupancy) and to dehydroxylation peak temperature in the range 400–600°C; (ii) it is not correct to impose a total octahedral occupancy strictly equal to 2 for dioctahedral smectites; (iii) in the smectite group there is not a continuous isomorphous series as would appear on the basis of chemical features only.

Resume

Resume

Des propriétés chimiques et cristallochimiques de smectites dioctaédriques naturelles, riches en fer, formées par l'érosion de roches basaltiques dans la région de Berici-Euganei (Italie du Nord), ont été examinées. L'étude a conduit aux conclusions suivantes: (i) le paramètre b peut être relié au rapport Fe3+/Σ (Σ: occupation des sites octaédriques) et à la température du pic de déshydroxylation dans le domaine de températures 400–600°C; (ii) dans le cas des smectites dioctaédriques, il n'est pas judicieux d'imposer une occupation des sites octaédriques égale à 2; (iii) dans le groupe des smectites, il n'existe pas de série isomorphe continue, telle que les seules propriétés chimiques le laisseraient prévoir.

Kurzreferat

Kurzreferat

Die chemischen und kristallchemischen Eigenschaften natürlicher dioktaedrischer eisenreicher Smektite, die durch Verwitterung basaltischer Gesteine in Berici-Euganei-Bereich (Nord-Italien) entstanden waren, wurden untersucht. Es wurde gefunden, daß die Größe der b-Achse sowohl mit den Fe3+/Σ-Verhältnis (Σ = oktaedrische Besetzungsdichte) als auch zur Temperatur des Dehydroxylierungspeaks im Bereich von 400 bis 600°C korreliert ist, (ii) daß für die gesamte oktaedrische Besetzungsdichte nicht ein Wert von exakt 2 für die oktaedrische Smektite vorausgesetzt werden darf, (iii) daß es in der Smektitgruppe keine kontinuierliche isomorphe Serie gibt, wie es auf der Basis chemischen Eigenschaften angenommen werden könnte.

Resumen

Resumen

Se han estudiado las propiedades quimicas y cristaloquimicas de unas esmectitas dioctaédricas naturales ricas en hierro, formadas por alteración de rocas basálicas en el área de Berici-Euganei, al norte de Italia. Los resultados indican que: (i) el valor del parámetro b podría estar correlacionado con la relación Fe+3/Σ (Σ = nivel de ocupación octaédrica) y con la temperatura de deshidroxilación en el rango de 400–600°C (ii) no es correcto imponer una ocupación octaédrica exactamente igual a 2 para las esmectitas dioctaédricas; (iii) en el grupo de las esmectitas no hay una serie isomórfica continua como podría deducirse teniendo en cuenta sólo sus propiedades químicas.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alietti, A. (1964) Alcuni minerali argillosi dei Monti Berici. Period, di Miner. XXXIII, 5371.Google Scholar
Alietti, A. (1970) I minerali di neoformazione dei Monti Berici. Miner. Petrogr. Acta 16, 2732.Google Scholar
Alietti, A. & Brigato, M.F. (1979) Behavior of natural montmorillonites at suitable water vapor pressure. Miner. Petrogr. Acta 23, 145150.Google Scholar
Alietti, A., Brigatti, M.F. & Poppi, L. (1978) Determinazione dell'alluminio amorfo in argille appenniniche. Miner. Petrogr. Acta 22, 157164.Google Scholar
Biermans, V. & Baert, L. (1977) Selective extraction of the amorphous Al, Fe and Si oxides using an alkaline Tiron solution. Clay Miner. 12, 127135.CrossRefGoogle Scholar
Brigatti, M.F. & Poppi, L. (1981) A mathematical model to distinguish the members of the dioctahedral smectite series. Clay Miner. 16, 8189.CrossRefGoogle Scholar
Brindley, G.W. & MacEwan, D.M.C. (1953) Structural aspects of the mineralogy of clays. Pp. 1532 in: Ceramics. A Symposium. British Ceramic Society, Stoke on Trent.Google Scholar
Caillère, S. & Hénin, S. (1957) Sur la présence a Diélette d'une saponite a texture fibreuse. Bull. Soc. Franç. Miner. Crist. 80, 343345.Google Scholar
Chantret, F., Desprairies, A., Douillet, P., Jacob, C., Steinberg, M. & Trauth, N. (1971) Révision critique de l'utilisation des méthodes thermiques en sedimentologie: cas des smectites (montmorillonites). Bull. Groupe franç. Argiles XXIII, 141172.CrossRefGoogle Scholar
Davis, J.C. (1973) Statistics and Data Analysis in Geology. Wiley, New York.Google Scholar
Eggleton, R.A. (1972) Nontronite: chemistry and X-ray diffraction. Clay Miner. 12, 181194.CrossRefGoogle Scholar
Goodman, B.A., Russell, J.D., Fraser, H.R. & Woodhams, F.W.D. (1976) A Mössbauer and IR spectroscopic study of the structure of nontronite. Clays Clay Miner. 24, 5359.CrossRefGoogle Scholar
Greene-Kelly, R. (1953) The identification of montmorillonoids in clays. J. Soil Sci. 4, 233237.CrossRefGoogle Scholar
Haranczyk, C. & Prochazka, K. (1974) Uwodnione krzemiany magnezowo-niklowe z Wir na Dolnym Slasku. Prace Muz. Ziemi 22, 362.Google Scholar
Harward, M.E. & Brindley, G.W. (1965) Swelling properties of synthetic smectites in relation to lattice substitutions. Clays Clay Miner. 13, 209222.CrossRefGoogle Scholar
Hashimoto, I. & Jackson, M.L. (1958) Rapid dissolution of allophane and kaolinite-halloysite after dehydration. Clays Clay Miner. 7, 102113.CrossRefGoogle Scholar
Isphording, W.C. (1975) Primary nontronite from Venezuelan Guyana. Am. Miner. 60, 840848.Google Scholar
Kimbara, K. (1973) Clay minerals in the Miocene low-grade metamorphic rocks, Tanzawa Mountains, Kanagawa Prefecture, Central Japan. Japan Assoc. Min. Pet. Econ. Geol. 68, 311328.CrossRefGoogle Scholar
Kimbara, K. (1975) Chlorite, saponite and regularly interstratified chlorite-saponite in the Miocene pyroclastic sediments (Green Tuff) at Taiheizan, Akita Prefecture, Japan. Mem. Vol. Prof. T. Sudo 4247.Google Scholar
Kimbara, K. & Honda, S. (1975) An iron-rich saponite-like mineral found in the Moriyama volcanic rocks, Gojome, Akita Prefecture, Japan. Bull. Geol. Surv. Japan 26, 3740.Google Scholar
Kimbara, K. & Shimoda, S. (1972) An iron-rich saponite and randomly interstatified mineral of chlorite and saponite in a pillow lava at Nibetsu, Akita Prefecture. J. Clay Sci. Soc. Japan 12, 133141.Google Scholar
Konta, J. & Sindelar, J. (1955) Saponite from the fissure fillings of the amphibolites of Caslov. Univ. Carolina Geologica 1, 177186.Google Scholar
Mackenzie, R.C. (1972) Differential Thermal Analysis. 1. Academic Press, London.Google Scholar
Mehera, O.P. & Jackson, M.L. (1968) Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clays Clay Miner. 7, 317327.CrossRefGoogle Scholar
Mongiorgi, R. & Morandi, N. (1970) Al-saponite e strati misti clorite-Al-saponite nelle idrotermaliti di una breccia a contatto con i diabasi di Rossena nell'Appennino reggiano. Miner. Petrogr. Acta 16, 139154.Google Scholar
Muchi, M. (1977) Saponite and related thomsonite from Iwano, Saga Prefecture, Japan. Bull. Fukuoka Univ. Educ. 26, 103115.Google Scholar
Muchi, M. & Higashiyama, K. (1972) Iron-rich saponite occurring in druse cavities of basalt near Yamashiro-cho, Sago Prefecture. Bull. Fukuoka Univ. Educ. 21, 151163.Google Scholar
Müller, G. & Förstner, U. (1976) Primary nontronite from Venezuelan Guyana; additional primary occurrences. (Red Sea, Lake Malawi. Am. Miner. 61, 500501.Google Scholar
Poppi, L. & Brigatti, M.F. (1976) Cristallochimica e caratteristiche termiche di alcune montmorilloniti italiane. Miner Petrogr. Acta 21, 4352.Google Scholar
Radoslovich, E.W. (1962) The cell dimensions and symmetry of layer lattice silicates. II—Regression relations. Am. Miner. 47, 617636.Google Scholar
Ross, C.S. & Hendricks, S.B. (1945) Minerals of the montmorillonite group. U.S. Prof. Paper Geol. Surv. 205-B.Google Scholar
Rozenson, I. & Heller-Kallai, L. (1977) Mössbauer spectra of dioctahedral smectites. Clays Clay Miner 25, 94101.CrossRefGoogle Scholar
Russell, J.D. & Clark, D.R. (1978) The effect of Fe-for-Si substitution on the b-dimension of nontronite. Clay Miner. 13, 133136.CrossRefGoogle Scholar
Schultz, L.G. (1969) Lithium and potassium absorption, dehydroxylation temperature and structural water content of aluminous smectites. Clays Clay Miner. 17, 115137.CrossRefGoogle Scholar
Schwertmann, U. (1961) Eigenschften und Bildung aufweitbarer (quellbarer) Dreischicht-Tonminerale in Boden aus Sedimenten. Beitrage Miner. Petrogr. 8, 199209.Google Scholar
Sudo, T. (1954) Iron-rich saponite found from Tertiary iron sand beds of Japan. J. Geol. Soc. Japan 60, 1827.CrossRefGoogle Scholar
Suquet, H., Malard, C., Copin, E. & Pezerat, H. (1981) Variation du parametre b et de la distance basale d001 dans une sèrie de saponites à charge croisante: I. Etats hydrates. Clay Miner. 16, 5367.CrossRefGoogle Scholar
Veniale, F. & Pace, S. (1970) Influence du traitement par le dithionite de sodium sur les hydroxydes libres d'une smectite. Bull. Groupefrane. Argiles XXII, 127137.CrossRefGoogle Scholar