Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-23T16:35:58.414Z Has data issue: false hasContentIssue false

Reductive dissolution and Mössbauer spectroscopic study of Fe forms in the fine fractions of Slovak Fe-rich bentonites

Published online by Cambridge University Press:  09 July 2018

P. Komadel
Affiliation:
Institute of Inorganic Chemistry, Slovak Academy of Sciences, SK-842 36 Bratislava, Slovakia
T. Grygar
Affiliation:
Institute of Inorganic Chemistry, Academy of Sciences of the Czech Republic, CZ-250 68 Řež, Czech Republic
H. Mehner
Affiliation:
Bundesanstalt für Materialforschung und -prüfung, Rudower Chaussee 5, D-12489 Berlin-Adlershof, Germany

Abstract

Four samples of <2 µm fractions of Fe-rich bentonites from tile area of the Zvolenská kotlina Basin (Slovakia) have been investigated by MiSssbauer spectroscopy and reductive dissolution in ammonium hydrogen oxalate (pH = 2.7). Both methods have shown the presence of goethite in the samples. The relative amount of Fe bound in goethite varied more within the samples of bentonite from Zvolensk~ Slatina, which was redeposited after transport over a short distance, than in the authigenically altered bentonite from Hrochot’. The results of the fits of the reductive dissolution curves suggest size distribution, variation in Al-for-Fe substitution in goethite particles and/or different access of extracting solution to goethite particles present in the analysed fine fractions of bentonites.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Čičel, B. & Komadel, P. (1994) Structural formulae of layer silicates. Pp. 114–136 in: Quantitative Methods in Soil Mineralogy (Amonette, J.E. & Zelazny, L.W., editors). SSSA Misc. Publ., SSSA, Madison, WI, USA.Google Scholar
Comell, R.M. & Schindler, P.W. (1987) Photochemical dissolution of goethite in acid/oxalate solution. Clays Clay Miner. 35, 347352.Google Scholar
Friedl, J. & Schwertmann, U. (1996) Aluminium influence on iron oxides: XVIII. The effect of A1 substitution and crystal size on magnetic hypeffine fields of natural goethites. Clay Miner. 31, 455–464.CrossRefGoogle Scholar
Fysh, S.A. & Clarke, P.E. (1982) Aluminous goethite: A Mössbauer study. Phys. Chem. Miner. 8, 180187.CrossRefGoogle Scholar
Golden, D.C., Bowen, L.H., Weed, S.B. & Bigham, J.M. (1979) M/Sssbauer studies of synthetic and soiloccuring aluminum-substituted goethites. Soil Sci. Soc. Am. ∼ 43, 802808.CrossRefGoogle Scholar
Goodman, B.A., Nadeau, P.H. & Chadwick, J. (1988) Evidence for the multiple nature of bentonites from Mössbauer and EPR spectroscopy. Clay Miner. 23, 147-159.Google Scholar
Grygar, T. (1996) The electrochemical dissolution of iron(III) and chromium (III) oxides and ferrites under conditions of abrasive stripping voltammetry. J. Electroanal. Chem. 405, 117125.CrossRefGoogle Scholar
Grygar, T. (1997) Dissolution of pure and substituted goethites controlled by the surface reaction under conditions of abrasive stripping voltammetry. J. Solid State Electrochem. 1, 7782.CrossRefGoogle Scholar
Grygar, T., Král, R., Nekovařik, Č. & Zelenka, P. (1997) Relics of laterites on Letovice crystalline complex. J. Czech. Geol. Society, 42, 121127.Google Scholar
Komadel, P. Čičel, B. & Stucki, J.W. (1993) Readily HC1- soluble iron in the fine fractions of some Czech bentonites. Geol. Carpath. Ser. Clays, 44, 1116.Google Scholar
Komadel, P. Lear, P.R.. & Stucki, J.W. (1990) Reduction and reoxidation of nontronite: Extent of reduction and reaction rates. Clays Clay Miner. 38, 203208.CrossRefGoogle Scholar
Lear, P.R., Komadel, P. & Stucki, J.W. (1988) M/Sssbauer spectroscopy identification of Fe oxides in nontronite from Hohen Hagen, Federal Republic of Germany. Clays Clay Miner. 36, 376–378.CrossRefGoogle Scholar
Lego, S., Morh∼6ov∼. E. & Komadel, P. (1995) Distribution of Fe in the fine fractions of some Czech bentonites. Clay Miner. 30, 157164.CrossRefGoogle Scholar
Lim-Nunez, R.S.L. & Gilkes, R.J. (1987) Acid dissolution of synthetic metal-containing goethites and hematites. Proc. Int. Clay Conj. Denver, 197-204.Google Scholar
Malengreau, N., Bedidi, A., Muller, J.-P. & Herbillon, A.J. (1996) Spectroscopic controbof iron oxide dissolution in two ferralitic soils. EurJ. Soil Sci. 47, 13–20.Google Scholar
Mehra, O.P. & Jackson, M.L. (1960) Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clays Clay Miner. 7, 317327.CrossRefGoogle Scholar
Murad, E. (1987) Mössbauer spectra of nontronites: structural implications and characterization of associated Fe oxides. Z. Pflanzenerniihr. Bodenk. 150, 279285.CrossRefGoogle Scholar
Murad, E. (1988) Properties and behavior of iron oxides as determined by Mössbauer spectroscopy. Pp. 309-350 in: Iron in Soils and Clay Minerals (Stucki, J.W., Goodman, B.A. & Schwertmann, U., editors). D. Reidel, Dordrecht.Google Scholar
Murad, E., Bowen, L.H., Long, G.J. & Quuin, T.G. (1988) The influence of crystallinity on magnetic ordering in natural femhydrites. Clay Miner. 23, 161173.CrossRefGoogle Scholar
Murad, E. & Schwertmann, U. (1983) The influence of aluminium substitution and crystallinity on the Mössbauer spectra of goethite. Clay Miner. 18, 301312.CrossRefGoogle Scholar
Ruan, H.D. & Gilkes RJ. (1995) Acid dissolution of synthetic aluminous goethite before and after transformation to hematite by heating. Clay Miner. 30, 5565.CrossRefGoogle Scholar
Schwertmann, U. (1984) The influence of aluminium on iron oxides: IX. Dissolution of Al-goethites in 6 M HCI. Clay Miner. 19, 919.CrossRefGoogle Scholar
Schwertmann, U. & Comell, R.M. (1991) Iron Oxides in the Laboratory: Preparation and Characterization. VCH Weinheim.Google Scholar
Song, I., Gervasio, D. & Payer, J.H. (1996) Electrochemical behaviour of iron and iron oxide thin films in alkaline (1 M KOH) aqueous solution: a voltammetry study for cathodic instability of coating/ metal interface. J. Appl. Electrochem. 26, 10451052.CrossRefGoogle Scholar
Šucha, V., Galko, I., Madejová, J. & Kraus, I. (1996) Mineralogical and crystallochemical characteristics of bentonite from the area of the Zvolenská kotlina Basin (Western Carpathians). Mineralia Slovaca, 28, 129134 (in Slovak).Google Scholar
Torrent, J., Schwertmann, U. & Barron, V. (1987) The reductive dissolution of synthetic goethite and hematite in dithionite. Clay Miner. 22, 329337.CrossRefGoogle Scholar
Vandenberghe, R.E., De Grave, E., Landuydt, C. & Bowen, L.H. (1990) Some aspects concerning the characterization of iron oxides and hydroxides in soils and clays. Hyperf Inter. 53, 175–196.CrossRefGoogle Scholar