Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-23T07:48:49.491Z Has data issue: false hasContentIssue false

Preparation of porous materials by chemical activation of the Llano vermiculite

Published online by Cambridge University Press:  09 July 2018

H. Suquet
Affiliation:
Laboratoire de Réactivité de Surface et Structure, URA 1106, Université P. et M. Curie, 4 Place Jussieu, 75252-Paris Cédex 05
S. Chevalier
Affiliation:
Laboratoire de Réactivité de Surface et Structure, URA 1106, Université P. et M. Curie, 4 Place Jussieu, 75252-Paris Cédex 05
C. Marcilly
Affiliation:
Institut Français du Pétrole, BP 311, 92506-Rueil-Malmaison, France
D. Barthomeuf
Affiliation:
Laboratoire de Réactivité de Surface et Structure, URA 1106, Université P. et M. Curie, 4 Place Jussieu, 75252-Paris Cédex 05

Abstract

A mild acid attack of the Llano vermiculite produces porous materials suitable for use as cracking catalysts and/or catalysts supports. After HCl attack at 80°C (1 m), the number of acid sites measured by the Hammett indicator method is ∼0·50/nm2, and the specific surfaces are 245 m2/g after calcination at 550°C (4 h), and 55 m2/g after steaming at 750°C (4 h). The performance of leached (1 m HCl) vermiculite has been compared with another hydrocarbon cracking catalyst—γ-Al2O3. The leached vermiculite produces a definite higher conversion and higher C3, C4 and gasoline yields, but much lower coke production. By electron microscopy, infrared spectroscopy, X-ray powder diffraction and thermal analysis, it has been shown that the leached vermiculite samples are composed of more or less attacked layers retaining their original platy morphology, and non-crystalline hydrated silica. Chemical analyses indicate that octahedral cations are dissolved first.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andre, L. (1972) Contribution a Vetude des mecanistnes d'échange de cations dans les vermiculites trioctaedriques. Thèse Doctorat, Univ. Paul Sabatier, Toulouse, France.Google Scholar
Benesi, H. A. (1956) Acidity of catalyst surface. Acid strength from colors of adsorbed indicators. J. Am. Chem, Soc., 78, 5490–5494.Google Scholar
Clabaugh, S.E. & Barnes, V.E. (1959) Vermiculite in the central Texas. Texas Univ. Bur. Ecoti. Geol. Kept. Invest., 4045.Google Scholar
Farmer, V.C. (1974) The layer silicates. Pp. 343-349 in: The Infrared Spectra of Minerals. (Farmer, V.C., editor), Mineralogical Society, London.Google Scholar
Frenkel, M. (1974) Surface acidity of the montmorillonites. Clays Clay Miner. 22, 435441. CrossRefGoogle Scholar
Rausell-Colom, J.A., Fernandez, M., Serratosa, J.M., Alcover, J.F. & Gatineau, L. (1980) Organisation de Tespace interlamellaire dans les vermiculites monococouches et anhydres. Clay Miner., 15, 37–57.Google Scholar
Rupert, J.P., Granquist, W.T. & Pinnavaia, T.J. (1987) Catalytic properties of clay minerals. Pp. 275-318 in: Chemistry of Clays and Clay Minerals. (Newman, A.C.D., editor). Mineralogical Society, London.Google Scholar
Suquet, H., Malard, C., Quarton, M., Dubernat, J. & Pezerat, H. (1984) Etude dubiopyriboleforme par chauffage des vermiculites magnesiennes. Clay Miner., 19, 211221. Google Scholar
Suquet, H. (1989) Effect of dry grinding and leaching on the crystal structure of chrysotile. Clays Clay Miner., 37, 439445 Google Scholar
Tichit, D., Fajula, F., Figueras, F., Gueguen, C. & Bousquet, J. (1988) Influence of preparation conditions on the catalytic properties of Al-pillared montmorillonites. Pp. 238252 in; Fluid Catalytic Cracking (Occelli, M.L., editor). ACS Symposium Series No. 375.Google Scholar