Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T06:23:18.276Z Has data issue: false hasContentIssue false

Photocatalytic activity of TiO2/stevensite nanocomposites for the removal of Orange G from aqueous solutions

Published online by Cambridge University Press:  27 February 2018

L. Bouna
Affiliation:
Laboratoire de Matière Condensée et Nanostructures (LMCN), Faculté des Sciences et Techniques Guéliz, BP 549, Marrakech, Morocco
B. Rhouta
Affiliation:
Laboratoire de Matière Condensée et Nanostructures (LMCN), Faculté des Sciences et Techniques Guéliz, BP 549, Marrakech, Morocco
F. Maury
Affiliation:
CIRIMAT, ENSIACET, 4 Allée EmileMonso, BP44362, 31030 ToulouseCedex 4, France
A. Jada*
Affiliation:
IS2M, 15 rue Jean Starcky BP 2488, 68057 Mulhouse Cedex, France
F. Senocq
Affiliation:
CIRIMAT, ENSIACET, 4 Allée EmileMonso, BP44362, 31030 ToulouseCedex 4, France
M. -C. Lafont
Affiliation:
CIRIMAT, ENSIACET, 4 Allée EmileMonso, BP44362, 31030 ToulouseCedex 4, France
*

Abstract

TiO2/stevensite nanocomposite photocatalysts were synthesized by a solvothermal method using TiCl3/HCl as reactants and the stevensite clay mineral extract as support. The prepared photocatalyst samples were then characterized using various techniques such as X-ray diffraction (XRD), Infrared spectroscopy (IR) and Transmission Electron Microscopy (TEM). The Points of Zero Charge (PZC) of the various samples were evaluated by titration of the non-modified and the Ti-modified clay aqueous dispersions, with cationic surfactant solutions. The photocatalytic activity of the resulting nanocomposites samples were evaluated for the removal of Orange G (OG) from aqueous solution as a model dye pollutant. The data indicate that the formation of Na+-stevensite by the TiO2 particles leads to TiO2/stevensite nanocomposites having higher specific surface areas and mesopore volumes, and lower PZC values. Further, the photocatalytic activity was greater for the TiO2/stevensite nanocomposites having the greatest Ti amount, as compared to a pure TiO2 sample, and increased with the increase of the TiO2 content in the TiO2/stevensite nanocomposites.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aït Aghzzaf, A., Rhouta, B., Steinmetz, J., Rocca, E., Aranda, E., Khalil, A., Yvon, J. & Daoudi, L. (2012) Corrosion inhibitors based on chitosan-heptanoate modified beidellite. Applied Clay Science, 65-66, 173178.Google Scholar
Aït Aghzzaf, A., Rhouta, B., Rocca, E., Khalil, A. & Steinmetz, J. (2014) Corrosion inhibition of zinc by calcium-exchanged beidellite clay mineral : a new smart corrosion inhibitor. Corrosion Science, 80, 4652.Google Scholar
An, T., Chen, J., Li, G., Ding, X., Sheng, G., Fu, J., Mai, B. & O’Shea, K.E. (2008) Characterization and photocatalytic activity of TiO2 immobilized hydrophobic montmorillonite photocatalysts: degradation of decabromodiphenyl ether (BDE 209). Catalysis Today, 139, 6976.Google Scholar
Aranda, P., Kun, R., Martin Luengo, M.A., Letaïef, S. Dékány, I. & Ruiz-Hitzky, E. (2008) Titania-sepiolite nanocomposites prepared by a surfactant templating colloidal route. Chemistry of Material, 20, 8491.Google Scholar
Benhammou, A., Tanouti, B., Nibou, L., Yaacoubi, A. & Bonnet, J.P. (2009) Mineralogical and physicochemical investigation of mg-smectite from Jbel Rhassoul, Morocco. Clays and Clay Minerals, 57, 264270.Google Scholar
Bouna, L., Rhouta, B., Amjoud, M., Jada, A., Maury, F., Daoudi, L. & Senocq, F. (2010) Correlation between electrokinetic mobility and ionic dyes adsorption of Moroccan stevensite. Applied Clay Science, 48, 527530.CrossRefGoogle Scholar
Bouna, L., Rhouta, B., Amjoud, M., Maury, F., Lafont, M.-C., Jada, A., Senocq, F. & Daoudi, L. (2011) Synthesis, characterization and photocatalytic activity of TiO2 supported natural palygorskite microfibers. Applied Clay Science, 52, 301311.CrossRefGoogle Scholar
Bouna, L., Rhouta, B., Amjoud, M., Maury, F., Jada, A., Daoudi, L., Senocq, F., Lafont, M.-C. & Drouet, C. (2012a) Synthèse, caractérisations et tests photocatalytiques d’un matériau argileux d’origine naturelle à base de beidellite fonctionnalisée par TiO2. Matériaux & Techniques, 100, 241252.Google Scholar
Bouna, L., Rhouta, B., Daoudi, L., Maury, F., Amjoud, M., Senocq, F., Lafont, M.C., Jada, A. & Aîtaghzzaf, A. (2012b) Mineralogical and Physico-chemical characterisations of ferruginous beidellite-rich clay from Agadir basin (Morocco). Clays and Clay Minerals, 60, 278290.Google Scholar
Bouna, L., Rhouta, B. & Maury, F. (2013) Physicochemical study of photocatalytic activity of TiO2-supported palygorskite clay mineral. International Journal of Photoenergy, Article ID 815473, 6 pp. doi:10.1155/2013/815473.Google Scholar
Brunauer, S., Emmet, P.H. & Teller, E. (1938) Adsorption of gases in multimolecular layers. Journal of American Chemical Society, 60, 309319.Google Scholar
Feng, J., Hu, X., Yue, P. L., Zhu, H.-Y. & Lu, G.Q. (2003) A novel laponite clay-based Fe nanocomposite and its photo-catalytic activity in photo-assisted degradation of Orange II. Chemical Engineering Science, 58, 679685.Google Scholar
Frini-Srasra, N. & Srasra, E. (2010) Acid treatment of south Tunisian palygorskite: Removal of Cd(II) from aqueous and phosphoric acid solutions. Desalination, 250, 2634.Google Scholar
Hadnadjev Kostic, M., Vulic, T., Ranogajec, J., Marinkovic-Neducin, R. & Radosavljevic-Mihajlovic, A. (2013) Thermal and photocatalytic behavior of Ti/ LDH nanocomposites. Journal of Thermal Analysis and Calorimetry, 111, 11551162.CrossRefGoogle Scholar
Henych, J. & Štengl, V. (2013) Feasible Synthesis of TiO2 Deposited on Kaolin for Photocatalytic Applications. Clays and Clay Minerals, 61, 165176.Google Scholar
Hofstadler, K., Rupert, B., Novalic, S. & Heisler, G. (1994) New reactor design for photocatalytic wastewater treatment with TiO2 immobilized on fused-silica glass fibers: photomineralization of 4-chlorophenol. Environmental Science & Technology, 28, 670674.CrossRefGoogle ScholarPubMed
Holtzapffel, T. (1985) Les Miné raux Argileux: Préparation, Analyse Diffractomé trique et Dé termination. Société Géologique du Nord Publication, 12, 1136.Google Scholar
Houari, M., Saidi, M., Tabet, D., Pichat, P. & Khalaf, H. (2005) The removal of 4-chlorophenol and dichloroacetic acid in water using Ti-, Zr- and Ti/Zr-pillared bentonites as photocatalyst. American Journal of Applied Sciences, 2, 11361140.Google Scholar
Jada, A., Debih, H. & Khodja, M. (2006) Montmorillonite surface properties modifications by asphaltenes adsorption. Journal of Petroleum Science and Engineering, 52, 305316.Google Scholar
Khalfallah Boudali, L., Ghorbel, A., Tichit, D., Chiche, B., Dutartre, R. & Figueras, F. (1994) Synthesis and characterization of titanium-pillared montmorillonites. Microporous Materials, 2, 525535.Google Scholar
Liu, J., Dong, M., Zuo, S. & Yu, Y. (2009) Solvothermal preparation of TiO2/montmorillonite and photocatalytic activity. Applied Clay Science, 43, 156159.CrossRefGoogle Scholar
Nikolopoulou, A., Papoulis, D., Komarneni, S., Tsolis-Katagas, P., Panagiotaras, D., Kacandes, G.H., Zhang, P., Yin, S. & Sato, T. (2009) Solvothermal preparation of TiO2/saponite nanocomposites and photocatalytic activity. Applied Clay Science, 46, 363368.Google Scholar
Ooka, C., Yoshida, H., Suzuki, K. & Hattori, T. (2004) Highly hydrophobic TiO2 pillared clay for photocatalytic degradation of organic compounds in water. Microporous and Mesoporous Materials, 67, 143150.Google Scholar
Paul, B., Martens, W.N. & Frost Ray, L. (2012) Immobilised anatase on clay mineral particles as a photocatalyst for herbicides degradation. Applied Clay Science, 57, 4954.Google Scholar
Rhouta, B., Kaddami, H., Elbarqy, J., Amjoud, M., Daoudi, L., Maury, F., Senocq, F., Maazouz, A. & Gerard, J.F. (2008) Elucidating the crystal-chemistry of Jbel Rhassoul stevensite (Morocco) by advanced analytical techniques. Clay Minerals, 43, 393404.Google Scholar
Rhouta, B., Zatile, E., Bouna, L., Lakbita, O., Maury, F., Daoudi, L., Lafont, M.C., Amjoud, M., Senocq, F., Jada, A. & Aït Aghzzaf, A. (2013) Comprehensive physicochemical study of dioctahedral palygorskiterich clay from Marrakech High Atlas (Morocco). Physics and Chemistry of Minerals, 40, 411424.Google Scholar
Seung Mok, L. & Diwakar, T. (2012) Organo and inorgano-organo-modified clays in the remediation of aqueous solutions: An overview. Applied Clay Science, 59–60, 84102.Google Scholar