Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T00:33:52.260Z Has data issue: false hasContentIssue false

The origin and formation of clay minerals in soils: past, present and future perspectives

Published online by Cambridge University Press:  09 July 2018

M. J. Wilson*
Affiliation:
Macaulay Land Use Research Institute, Craigiebuckler, Aberdeen AB15 8QH, UK

Abstract

The origin and formation of soil clay minerals, namely micas, vermiculites, smectites, chlorites and interlayered minerals, interstratified minerals and kaolin minerals, are broadly reviewed in the context of research over the past half century. In particular, the pioneer overviews of Millot, Pedro and Duchaufour in France and of Jackson in the USA, are considered in the light of selected examples from the huge volume of work that has since taken place on this topic. It is concluded that these early overviews may still be regarded as being generally valid, although it may be that too much emphasis has been placed upon transformation mechanisms and not enough upon neoformation processes. This review also highlights some of the many problems pertaining to the origin and formation of soil clays that remain to be resolved.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aba-Huseyn, M.M., Dixon, J.B. & Lee, S.Y. (1980) Mineralogy of Saudi Arabian soils: south western Region. Soil Sci. Soc. Am. J. 44, 643649.Google Scholar
Abtahi, A. (1977) Effect of saline and alkaline ground water on soil genesis in semi arid Southern Iran. Soil Sci. Soc. Am. J. 41, 583588.Google Scholar
Allen, B.L. & Fanning, D.S. (1983) Comparison and Soil Genesis. Pp. 141-192 in: Pedogenesis and Soil Taxonomy. I. Concepts and Interactions (Wilding, L.P., Smeck, N.E. & Hall, G.F., editors). Elsevier, Amsterdam.Google Scholar
Al Ravi, A.H., Jackson, M.L. & Hole, F.D. (1969) Mineralogy of some arid and semi-arid land soils of Iraq. Soil Sci. 107, 480486.CrossRefGoogle Scholar
Allen, B.L. & Hajek, B.F. (1989) Mineral Occurrence in Soil Environments. Pp. 199-278 in: Minerals in Soil Environments (Dixon, J.B. & Weed, S.B., editors).Soil Sci. Soc. America, Madison, Wisconsin, USA.CrossRefGoogle Scholar
Angel, B.R., Jones, J.P.E. & Hall, P.L. (1974) Electron spin resonance studies of doped synthetic kaolinite. I. Clay Miner. 10, 247255.CrossRefGoogle Scholar
Aouidjit, H., Elsass, F., Righi, D. & Robert, M. (1996) Mica weathering in acidic soils by analytical electron microscopy. Clay Miner. 31, 319332.CrossRefGoogle Scholar
April, R.H., Hluchy, M.M. & Newton, R.M. (1986) The nature of vermiculite in Adirondack soils and till. Clays Clay Miner. 34, 549556.CrossRefGoogle Scholar
Badraoui, M. & Bloom, P.R. (1990) Iron rich high charge beidellite in Vertisols and Mollisols of the High Chaouia Region of Morocco. Soil Sci. Soc. Am. J. 54, 267274.CrossRefGoogle Scholar
Bailey, S.W. (1989) Halloysite — a critical assessment. Proc. 9th Int. Clay Conf. Strasbourg, 89-98.Google Scholar
Bain, D.C. (1977) The weathering of ferruginous chlorite in a podzol from Argyllshire, Scotland. Geoderma, 17, 193208.Google Scholar
Bain, D.C., Mellor, A. & Wilson, M.J. (1990) Nature and origin of an aluminous vermiculitic weathering product in acid soils from upland catchments in Scotland. Clay Miner. 25, 467475.CrossRefGoogle Scholar
Barnhisel, R.I. & Bertsch, P.M. (1989) Chlorites and Hydroxy Interlayered Vermiculite and Smectite. Pp. 729-788 in: Minerals in Soil Environments (Dixon, J.B. & Weed, S.B., editors). Soil Sci. Soc. Amer., Madison, Wisconsin.Google Scholar
Barshad, I. & Kishk, F.M. (1969) Chemical composition of soil vermiculite clays as related to their genesis. Contrib. Mineral. Pet. 24, 136155.CrossRefGoogle Scholar
Basham, I.R. (1974) Mineralogical changes associated with deep weathering of gabbro in Aberdeenshire. Clay Miner. 10, 189202.CrossRefGoogle Scholar
Bergkraut, V., Singer, A. & Stahr, K. (1994) Palagonite reconsidered: paracrystalline illite-smectite from regoliths on basic pyroclastics. Clays Clay Miner. 42, 582592.Google Scholar
Borchardt, (1989) Smectites. Pp. 675-727 in: Minerals in Soil Environments (Dixon, J.B. & Weed, S.B., editors). Soil Sci. Soc. America Madison, Wisconsin.Google Scholar
Brammer, H. & Brinkman, R. (1977) Surface water gley soils in Bangladesh: Environment landforms and soil morphology. Geoderma, 17, 91109.CrossRefGoogle Scholar
Brown, G. (1953) The dioctahedral analogue of vermiculite. Clay Miner. Bull. 2, 6469.Google Scholar
Brown, G. & Newman, A.C.D. (1973) The reactions of soluble aluminium with montmorillonite. J. Soil Sci. 24, 339354.CrossRefGoogle Scholar
Buhmann, C. & Grubb, P.L.C. (1991) A kaolinite smectite interstratification sequence from a red-black toposequence. Clay Miner. 26, 343358.Google Scholar
Bui, E. & Wilding, L.P. (1988) Pedogenesis and mineralogy of a Haplaquept in Niger (West Africa). Geoderma, 43, 4964.Google Scholar
Buol, S.W. (1965) Present soil-forming factors and processes in arid and semi arid regions. Soil Sci. 99, 4549.Google Scholar
Buurman, P., Meyer EX. & Van Wijk, J.H. (1988) Weathering of chlorite and vermiculite in ultramafic rocks of Cabo Ortegal, northwest Spain. Clays Clay Miner. 36, 263269.Google Scholar
Calle de la, C. & Suquet, H. (1988) Vermiculite. Pp. 455-496 in: Hydrous Phyllosilicates (exclusive of micas) (Bailey, S.W., editor). Vol. 19. Reviews in Mineralogy. Mineralogical Soc. America, Washington.Google Scholar
Cantinolle, P., Didier, P., Meunier, J.D., Parron C, Guendon, J.L., Bocquier, G. & Nahon, D. (1984) Kaolinites ferriferes et oxy-hydroxydes de fer et d'alumine dans les bauxites des Cantonnettes (S E de la France). Clay Miner. 19, 125135.Google Scholar
Carson, C.D. & Dixon, J.B. (1972) Potassium selectivity in certain montmorillonitic soil clays. Soil Sci. Soc. Am. Proc. 36, 838843.CrossRefGoogle Scholar
Churchman, G.J. (1978) Studies on a climax sequence in soils in tussock grasslands. Mineralogy N. Z. J. Sci. 21, 467480.Google Scholar
Churchman, G.J. (1980) Clay minerals formed from micas and chlorites in some New Zealand soils. Clay Miner. 15, 5976.Google Scholar
Coleman, N.T., LeRoux, F.H. & Cady, J.G. (1963) Biotite-hydrobiotite-vermiculite in soils. Nature Lond. 198, 409410.CrossRefGoogle Scholar
Dao Cho, Lt. & Mermut, A.R. (1992) Evidence for halloysite formation from weathering of ferruginous chlorite. Clays Clay Miner. 40, 608619.Google Scholar
De Kimpe, C. & Tardy, Y. (1968) Etude de l'altération d'une biotite en kaolinite par spectroscopic infrarouge. Bull. Groupe Franc. Argiles, 19, 8185.Google Scholar
Delvaux, B., Herbillon, A.J., Vielvoye, L. & Mestdagh, M.M. (1990) Surface properties and clay mineralogy of hydrated halloysite soil clays. II. Evidence for the presence of halloysite smectite (H/Sm) mixed layer clays. Clay Miner. 25, 141160.CrossRefGoogle Scholar
Dixon, J.B. (1989) Kaolin and Serpentine Group Minerals. Pp. 467-525 in: Minerals in Soil Environments (Dixon, J.B. & Weed, S.B., editors). Soil Sci. Soc. America, Madison, Wisconsin.Google Scholar
Dixon, J.B. & Weed, S.B. (1989) Minerals in Soil Environments. Soil Sci. Soc. America, Madison, Wisconsin.Google Scholar
Douglas, L.A. (1989) Vermiculites. Pp. 635-674 in: Minerals in Soil Environments (Dixon, J.B. & Weed, S.B., editors). Soil Sci. Soc. America, Madison, Wisconsin.Google Scholar
Dregne, H.E. (1976) Soils of Arid Regions. Elsevier, New York.Google Scholar
Duchaufour, P. (1960) Précis de Pédologie. Masson, Paris.Google Scholar
Dymond, J., Biscaye, P.E. & Rex, R.W. (1974) Eolian origin of mica in Hawaiian soils. Geol. Soc. Am. Bull. 85, 3740.Google Scholar
Egashira, K. & Ohtsubo, M. (1983) Swelling and mineralogy of smectites in paddy soils derived from marine alluvium, Japan. Geoderma, 29, 119127.Google Scholar
Fanning, D.S., Keramidas, V.Z. & El-Desoky, M.A. (1989) Micas. Pp. 551-634 in: Minerals in Soil Environments (Dixon, J.B. & Weed, S.B., editors). Soil Sci. Soc. America, Madison, Wisconsin.Google Scholar
Farmer, V.C. & Wilson, M.J. (1970) Experimental conversion of biotite to hydrobiotite. Nature Lond. 226, 841842.Google Scholar
Farmer, V.C., Russell, J.D., McHardy, W.J., Newman, A.C.D., Alrichs, J.L. & Rimsaite, J.Y.H. (1971) Evidence for loss of protons and octahedral iron from oxidized biotites and vermiculites. Mineral. Mag. 38, 121137.Google Scholar
Fordham, A.W. (1990a) Formation of trioctahedral illite from biotite in a soil profile over granite gneiss. Clays Clay Miner. 38, 187195.Google Scholar
Fordham, A.W. (1990b) Weathering of biotite into dioctahedral clay minerals. Clay Miner. 25, 5163.Google Scholar
Glenn, R.C., Jackson, M.L., Hole, F.D. & Lee, G.B. (1960) Chemical weathering of layer silicate clays in loessderived Tama silt loam of southwestern Wisconsin. Clays Clay Miner. 8, 6383.CrossRefGoogle Scholar
Graham, R.C. & Southard, A.R. (1983) Genesis of a Vertisol and an associated Mollisol in Northern Utah. Soil Sci. Soc. Am. J. 47, 552559.CrossRefGoogle Scholar
Guzel, N. & Wilson, M.J. (1981) Clay mineral studies of a soil chronosequence in southern Turkey. Geoderma, 25, 113129.Google Scholar
Herbillon, A.J. & Makumbi, M.V. (1975) Weathering of chlorite in a soil derived from a chlorite-schist under humid tropical conditions. Geoderma, 13, 89104.Google Scholar
Herbillon, A.J., Mestdagh, M.M., Vielvoye, L. & Derouane, E.G. (1976) Iron in kaolinites with special reference to kaolinites from tropical soils. Clay Miner. 11, 201220.Google Scholar
Herbillon, A.J., Frankort, R. & Vielvoye, L. (1981) An occurrence of interstratified kaolinite-smectite minerals in a red-black soil toposequence. Clay Miner. 16, 195201.CrossRefGoogle Scholar
Islam, A.K.M.E. & Lotse, E.G. (1986) Quantitative mineralogical analysis of some Bangladesh soils with X-ray, ion exchange and selective dissolution techniques. Clay Miner. 21, 3142.CrossRefGoogle Scholar
Ismail, G.T. (1969) Role of ferrous iron oxidation in the alteration of biotite and its effect on the type of clay minerals formed in soils of arid and humid regions. Am. Miner. 54, 14601466.Google Scholar
Istok, J.D. & Harward, M.E. (1982) Influence of soil moisture on smectite formation in soils derived from serpentinite. Soil Sci. Soc. Am. J. 46, 11061108.Google Scholar
Jackson, M.L. (1964) Chemical composition of soils. Pp. 71-141 in: Chemistry of the Soil (Bear, F.E., editor). Reinhold Publishing Corp., New York.Google Scholar
Jackson, M.L. (1965) Clay transformations in soil genesis during the Quaternary. Soil Sci. 99, 1521.CrossRefGoogle Scholar
Johnson, J.J. (1964) Occurrence of regularly interstratified chlorite-vermiculite as a weathering product of chlorite in a soil. Am. Miner. 49, 556572.Google Scholar
Jones, J.P.E., Angel, B.R. & Hall, P.L. (1974) Electron spin resonance studies of doped synthetic kaolinite. II. Clay Miner. 10, 257270.Google Scholar
Juang, T.C. & Uehara, G. (1968) Mica genesis in Hawaiian soils. Soil Sci. Soc. Am. Proc. 32, 3135.CrossRefGoogle Scholar
Juo, J.S.R. & White, J.L. (1969) Orientation of the dipole moments of hydroxyl groups in oxidized and unoxidized biotite. Science, 165, 804805.CrossRefGoogle ScholarPubMed
Kantor, W. & Schwertmann, U. (1974) Mineralogy and genesis of clays in red-black soil toposequences on basic igneous rocks in Kenya. J. Soil Sci. 25, 6378.Google Scholar
Kapoor, B.S. (1972) Weathering of micaceous clays in some Norwegian podzols. Clay Miner. 9, 383394.Google Scholar
Karathanasis, A.D. (1988) Compositional and solubility relationships between aluminium-hydroxy interlayered soil smectites and vermiculites. Soil Sci. Soc. Am. J. 52, 15001508.CrossRefGoogle Scholar
Karathanasis, A.D. & Hajek, B.F. (1984) Evaluation of aluminium-smectite equilibria in naturally acid soils. Soil Sci. Soc. Am. J. 48, 413417.Google Scholar
Karathanasis, A.D., Hurt, G.W. & Hajek, B.F. (1986) Properties and classification of montmorillonite-rich Hapludults in the Alabama coastal plains. Soil Sci. 142, 7682.Google Scholar
Kato, K. (1965) Mineralogical study of weathering products of granodiorite at Shinshiro city (V) Trioctahedral aluminium vermiculite as a weathering product of biotite. Soil Sci. Plant Nutrition, Tokyo, 11, 114122.Google Scholar
Kodama, H. (1979) Clay minerals in Canadian soils: their origin, distribution and alteration. Can. J. Soil Sci. 59, 3758.CrossRefGoogle Scholar
Kodama, H. & Brydon, J.E. (1966) Interstratified montmorillonite-mica clays from sub-soils of the Prairie Provinces, Western Canada. Clays Clay Miner. 13, 151173.Google Scholar
La Iglesia, A. & Galàn, E. (1975) Halloysite-kaolinite transformation at room temperature. Proc. Int. Clay Conf. Madrid, 173-185.Google Scholar
La Manna, J.M. & Ugolini, F.C. (1987) Trioctahedral vermiculite in a 1980 pyroclastic flow, Mt St Helens, Washington. Soil Sci. 143, 162167.Google Scholar
Laird, D.A. & Nater, E.A. (1993) Nature of the illitic phase associated with randomly interstratified smectite-illite in soils. Clays Clay Miner. 41, 280287.Google Scholar
Laird, D.A., Fenton, T.E. & Scott, A.D. (1988) Low charge of smectites in an Argialboll-Agriaquoll Sequence. Soil Sci. Soc. Am. J. 52, 4630467.Google Scholar
Lou, G. & Huang, P.M. (1993) Silication of hydroxy aluminium interlayers in smectite. Clays Clay Miner. 41, 3844.Google Scholar
MacEwan, D.M.C. (1954) ‘Cardenite', a trioctahedral montmorillonoid derived from biotite. Clay Miner. Bull. 2, 120126.Google Scholar
Mahjoory, R.A. (1975) Clay mineralogy, physical and chemical properties of some soils in arid regions of Iran. Soil Sci. Soc. Am. Proc. 39, 11571164.Google Scholar
Makumbi, M.N. & Herbillon, A.J. (1972) Vermiculitisation expérimentale d'une chlorite. Bull Groupe Franc. Argiles, 24, 153164.Google Scholar
Martin-Garcia, J.M., Delgado, G., Sàndez-Maronón, M., Pàrraga, J.F. & Delgado, R. (1997) Nature of dioctahedral micas in Spanish red soils. Clay Miner. 32, 107122.Google Scholar
Masshady, A.S., Reda, M., Wilson, M.J. & Mackenzie, R.C. (1980) Clay and silt mineralogy of some soils from Qasim, Saudi Arabia. J. Soil Sci. 31, 101115.Google Scholar
McDaniel, P.A., Falen, A.L., Tice, K.R., Graham, R.C. & Fendorf, S.E. (1995) Beidellite in E horizons of Northern Idaho spodosols formed in volcanic ash. Clays Clay Miner. 43, 525532.CrossRefGoogle Scholar
Meads, R.E. & Maiden, P.J. (1975) Electron spin resonance in natural kaolinites containing Fe3+ and other transition metal ions. Clay Miner. 10, 313345.Google Scholar
Mendelovici, E., Yariv Sh. & Villalba, R. (1979) Ironbearing kaolinite in Venezuelan latérites. I. Infrared spectroscopy and chemical dissolution evidence. Clay Miner. 14, 323331.CrossRefGoogle Scholar
Millot, G. (1964) Géologie des Argiles. Masson, Paris.Google Scholar
Muller, J.P. & Calas, G. (1993) Genetic conditions of paramagnetic centers in kaolinites. Pp. 261-289 in: Kaolin Genesis and Utilization (Murray, H., Bundy, W. & Harvey, C., editors). Clay Miner. Soc, Boulder, Colorado.Google Scholar
Murali, V., Krishna Murti, G.S.R. & Sarma, V.A.K. (1978) Clay mineral distribution in two toposequences of tropical soils of India. Geoderma, 20, 257277.Google Scholar
Nadeau, P.H., Wilson, M.J., McHardy, W.J. & Tait, J. (1984) Interstratified clays as fundamental particles. Science, 225, 923925.Google Scholar
Nahon, D.B. & Colin, F. (1982) Chemical weathering of orthopyroxenes under lateritic conditions. Am. J. Sci. 282, 12321243.Google Scholar
Nash, V.E., Pettry, D.E. & Mohd Noor Sudin (1988) Mineralogy and chemical properties of two Ultisols formed in glauconitic sediments. Soil Sci. 145, 270277.Google Scholar
Nettleton, W.D., Nelson, R.E. & Flach, K.W. (1973) Formation of mica in surface horizons of dryland soils. Soil Sci. Soc. Am. Proc. 37, 473478.CrossRefGoogle Scholar
Nettleton, W.D. & Peterson, F.F. (1983) Aridisols. Pp. 165-215 in: Pedogenesis and Soil Taxonomy. II The Soil Orders (Wilding, L.P., Smeck, N.E. & Hall, G.F., editors). Elsevier, Amsterdam.Google Scholar
Newman, A.C.D. (1969) Cation exchange properties of micas. I. The relation between mica composition and K-exchange in solutions of different pH. J. Soil Sci. 20, 357373.Google Scholar
Niederbudde, E.A. (1975) Veranderungen von Dreischicht-Tonmineralen durch natives K in holozânen Mittel Deutschlands und Niederbayerns. Z. Pflanzennernaehr. Bodenk. 138, 217234.Google Scholar
Niederbudde, E.A. & Kussmaul, H. (1978) Tonmineral eigenschaften und Umwandlungen in Parabraunerde-Profilpaeren unter Acker und Wald in Suddeutschland. Geoderma, 20, 239255.Google Scholar
Norrish, K. (1973) Factors in the weathering of mica to vermiculite. Proc. Int. Clay Conf, Madrid, 417-432.Google Scholar
Norrish, K. & Pickering, J.G. (1983) Clay Minerals. Pp. 282-308 in: Soils: an Australian Viewpoint: Division of Soils, CSIRO. CSIRO, Melbourne/ Academic Press, London.Google Scholar
Ojanuga, A.G. (1973) Weathering of biotite in soils of a humid tropical climte. Soil Sci. Soc. Am. Proc. 37, 644646.Google Scholar
Olson, C.G. (1988) Clay mineral contribution to the weathering mechanisms in two contrasting watersheds. J. Soil Sci. 39, 457468.CrossRefGoogle Scholar
Ó;zkan, A. & Ross, G.J. (1979) Ferruginous beidellites in Turkish soils. Soil Sci. Soc. Am. J. 43, 12421248.Google Scholar
Paquet, H. (1967) Les montmorillonites des vertisols: alteration alcaline en milieu tropicale. Bull. Serv. Carte-Geol Als. Lorr. 20, 293306.Google Scholar
Pedro, G. (1964) Contribution a l'étude expérimentale de l'alterération geochimique des roches crystallines. Thèse Paris, Ann Agron.Google Scholar
Pedro, G. (1982) The conditions of formation of secondary constituents. Pp. 63-81 in: Constituents and Properties of Soils (Bonneau, M. & Souchier, B., editors) Academic Press, London.Google Scholar
Pedro, G., Carmouze, J.-P. & Velde, B. (1978) Peloidal nontronite formation in recent sediments of Lake Chad. Chem. Geol. 23, 139149.Google Scholar
Pevear, D.R., Dethier, D.P. & Frank, D. (1982) Clay minerals in the 1980 deposits from Mount St Helens. Clays Clay Miner. 30, 241252.Google Scholar
Pevear, D.R., Goldin, A. & Sprague, J.W. (1984) Mineral transformations in soils formed in glacial marine drift, Northwestern Washington. Soil Sci. Soc. Am. J. 48, 208216.Google Scholar
Poncelet, G.M. & Brindley, G.W. (1967) Experimental formation of kaolinite from montmorillonite at low temperatures. Am. Miner. 52, 11611173.Google Scholar
Proust, D. (1982) Supergene alteration of metamorphic chlorite in an amphibolite from the Massif Central, France. Clay Miner. 17, 159173.Google Scholar
Proust, D., Eyinery, J.P. & Beaufort, D. (1986) Supergene vermiculitization of a magnesium chlorite: iron and magnesium removal processes. Clays Clay Miner. 34, 572580.Google Scholar
Rausel Colom, J.A., Sweatman, T.R., Wells, C.B. & Norrish, K. (1965) Studies in the artificial weathering of mica. Pp. 40-72 in: Experimental Pedology (Hallsworth, E.G. & Crawford, D.V., editors). Butterworths, London.Google Scholar
Reid, D.A., Graham, R.C., Edinger, S.B., Baurent, B.H. & Ervin ID. (1988) Celadonite and its transformation to smectite in an Entisol at Red Rock Canyon, Kern County, California. Clays Clay Miner. 36, 425431.Google Scholar
Robert, M., Hardy, M. & Elsass, F. (1991) Crystallochemistry, properties and organization of soil clays derived from major sedimentary rocks in France. Clay Miner. 26, 409420.Google Scholar
Romero, R., Robert, M., Elsass, F. & Garcia, C. (1992) Evidence by transmission electron microscopy of weathering microsystems in soils developed from crystalline rocks. Clay Miner. 27, 2134.Google Scholar
Ross, G.J. & Mortland, M.M. (1966) A soil beidellite. Soil Sci. Soc. Am. Proc. 30, 337343.Google Scholar
Ross, G.J. & Kodama, H. (1976) Experimental alteration of chlorite into a regularly interstratified chloritevermiculite by chemical oxidation. Clays Clay Miner. 24, 183190.Google Scholar
Rossignol, J.P. (1983) Les Vertisols du nord de l'Uruguay. Cah. ORSTOM sér Pédol. 20, 271291.Google Scholar
Rutherford, G.K. & Debenham, P.L. (1981) The mineralogy of some silt and clay fractions from some soils on the Faeroe Islands. Soil Sci. 132, 288299.Google Scholar
Sawhney, B.L. (1989) Interstratification in Layer Silicates. Pp. 789-828 in: Minerals in Soil Environments (Dixon, J.B. & Weed, S.B., editors). Soil Sci. Soc. America, Madison, Wisconsin.Google Scholar
Shadfan, H. (1983) Clay minerals and potassium status of some soils of Jordan. Geoderma, 31, 4156.Google Scholar
Singer, A. (1971) Clay minerals in the soils of the southern Golan Heights. Isr. J. Earth Sci. 20, 105115.Google Scholar
Singer, A. (1984) Clay formation in saprolites of igneous rocks under semi arid to arid conditions, Negev, Southern Israel. Soil Sci. 137, 332340.Google Scholar
Singh, B. & Gilkes, R.J. (1991) A K-rich beidellite from a lateritic pallid zone in West Australia. Clay Miner. 26, 233244.Google Scholar
Singh, B. & Gilkes, R.J. (1993) Weathering of spodumene to smectite in a lateritic environment. Clays Clay Miner. 41, 624630.Google Scholar
Smeck, N.E., Wilding, L.P. & Hollawaychuk, N. (1968) Genesis of argillic horizons in Celina and Morley soils of western Ohio. Soil Sci. Soc. Am. Proc. 32, 550556.Google Scholar
Soil Survey Staff (1960) Soil Classification: A Comprehensive System. USDA.Google Scholar
Stephen, I. (1952) A study of rock weathering with reference to the soils of the Malvern Hills. II. Weathering of appinite and Ivy Scar rock. J. Soil Sci. 3, 219237.Google Scholar
Sudo, T. & Yotsumoto, H. (1977) The formation of halloysite tubes from spherulitic halloysite. Clays Clay Miner. 25, 155159.Google Scholar
Tardy, Y., Cheverry, C. & Fritz, B. (1974) Neoformation d'une argile magnésienne dans les dépressions interdunaires du lac Tchad. Applications aux domaines de stabilité des phyllosilicates alumineux, magnésiens et ferriferes. C. R. Acad. Sci. Ser. D. 278, 19992002.Google Scholar
Tomura, S., Shibasaki, Y. & Mizuta, H. (1985) Growth, conditions and genesis of spherical and platy halloysite. Clays Clay Miner. 33, 200206.Google Scholar
Trauth, N., Paquet, H., Lucas, J. & Millot, G. (1967) Montmorillonite of lithomorphic Vertisols are ferriferous: geochemical and sedimentological consequences. C R. Acad. Sci. Paris Ser. D. 264, 15771579.Google Scholar
Ugolini, F.C., Dahlgren, R., La Manna, J., Muhn, W. & Zachara, J. (1991) Mineralogy and weathering processes in Recent and Holocene tephra deposits of the Pacific Northwest, USA. Geoderma, 51, 277299.Google Scholar
Vicente, M.A., Razzaghe, M. & Robert, M. (1977) Formation of aluminium hydroxy vermiculite (intergrade) and smectite from mica under acidic conditions. Clay Miner. 12, 101112.Google Scholar
Vicente-Hernandez, J., Vicente, M.A., Robert, M. & Goodman, B.A. (1983) Evolution des biotites en fonction des conditions d'oxydo-reduction du milieu. Clay Miner. 18, 267275.Google Scholar
Villiers de, J.M. & Jackson MX. (1967) Aluminous chlorite origin of pH dependent cation exchange variations. Soil Sci. Soc. Am. Proc. 31, 614619.Google Scholar
Wada, K. & Kakuto, Y. (1983) Integradient vermiculitekaolin mineral in a Korean Ultisol. Clays Clay Miner. 31, 183190.Google Scholar
Wada, S.I. & Mizota, C. (1982) Iron-rich halloysite with crumpled lamellar morphology from Hokkaido, Japan. Clays Clay Miner. 30, 315317.Google Scholar
Walker, G.F. (1949) The decomposition of biotite in the soil. Mineral. Mag. 28, 693703.Google Scholar
Watanabe, T., Sowada, Y., Russell, J.D., McHardy, W.J. & Wilson, M.J. (1992) The conversion of montmorillonite to interstratified halloysite-smectite by weathering in the Omi acid clay deposit, Japan. Clay Miner. 27, 159173.Google Scholar
Wilding, L.P., Drees, L.R., Smeck, N.E. & Hall, G.F. (1971) Mineral and elemental composition of Wisconsin age till deposits in west-central Ohio. Pp. 290-318 in: Till: A Symposium (Goldthwait, R.P., editor). Ohio State University Press, Columbus, Ohio.Google Scholar
Wilke, D.M. & Zech, W. (1987) Mineralogies of silt and clay fractions of twelve soil profiles in the Bolivian Andes (Callavaya Region). Geoderma, 39, 189208.Google Scholar
Wilson, M.J. (1965) Weathered biotite from Strathdon, Aberdeenshire. Nature Lond. 210, 11881189.CrossRefGoogle Scholar
Wilson, M.J. (1966) Clay mineralogy of some soils derived from a biotite-rich quartz gabbro in the Strathdon area, Aberdeenshire. Clay Miner. 7, 91100.Google Scholar
Wilson, M.J. (1970) A study of weathering in a soil derived from a biotite-hornblende rock. I. Weathering of biotite. Clay Miner. 8, 291303.Google Scholar
Wilson, M.J. (1987) Soil smectites and related interstratified minerals: recent developments. Proc. Int. Clay Conf, Denver, 167-173.Google Scholar
Wilson, M.J. (1993) Pédologie factors influencing the distribution and properties of soil smectites. Trends Agric. Sci. 1, 199216.Google Scholar
Wilson, M.J. & Mitchell, B.D. (1979) Comparative study of a Vertisol and an Entisol from the Blue Nile plains of Sudan. Egypt J. Soil Sci. 19, 207220.Google Scholar
Wilson, M.J. & Nadeau, P.H. (1985) Interstratified clay minerals and weathering processes. In: The Chemistry of Weathering (Drever, J.I., editor). D. Riedel, Dordrecht, The Netherlands.Google Scholar
Wilson, M.J., Bain, D.C. & Duthie, D.M.L. (1984) The soil clays of Great Britain. II. Scotland. Clay Miner. 19, 709735.Google Scholar
Wilson, M.J., Oyegoke, C. & Fraser, A.R. (1997) Occurrence of trioctahedral clay mica in some Nigerian alluvial soils. 11th Int. Clay Conf. Ottawa, Canada. Abstracts, p. A83.Google Scholar