Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-20T03:56:55.845Z Has data issue: false hasContentIssue false

Organophilization of a Brazilian Mg-montmorillonite without prior sodium activation

Published online by Cambridge University Press:  02 January 2018

Manoella Silva Cavalcante*
Affiliation:
Programa de Pós-Graduação em Geologia e Geoquímica, Instituto de Geociências, Universidade Federal do Pará, Campus do Guamá, 66075-110, Belém, Pará, Brazil
Simone Patrícia Aranha Paz
Affiliation:
Faculdade de Engenharia de Materiais, Campus de Ananindeua, Universidade Federal do Pará, Ananindeua, Pará, Brazil
Rômulo Simões Angélica
Affiliation:
Programa de Pós-Graduação em Geologia e Geoquímica, Instituto de Geociências, Universidade Federal do Pará, Campus do Guamá, 66075-110, Belém, Pará, Brazil
Edson Noryuki Ito
Affiliation:
Departmento de Engenharia de Materiais, Universidade Federal do Rio Grande do Norte, Natal-RN, Brazil
Roberto Freitas Neves
Affiliation:
Programa de Pós-Graduação em Geologia e Geoquímica, Instituto de Geociências, Universidade Federal do Pará, Campus do Guamá, 66075-110, Belém, Pará, Brazil
*

Abstract

The use of Mg-montmorillonite in the production of organoclay without sodium activation was investigated. For this purpose, organophilization experiments were carried out by varying the concentration of two surfactants: hexadecyltrimethylammonium (HDTMA+) and dodecyltrimethylammonium (DTMA+) ions. These surfactantswere used at concentrations 0.7, 1.0 and 1.5 times that of the cation exchange capacity (62.6 meq/100 g) of the clay, with a reaction time of 8 h at temperatures of 25 and 80°C. X-ray diffraction (XRD) results confirmed the intercalation for both in natura and activated samples. The Fourier-transforminfrared (FTIR) spectroscopy and XRD results showed that the ratio of gauche/trans conformers decreased with increased basal spacing. The results of thermodifferential and thermogravimetric analysis (DTA/DTG) confirmed the thermal stability of the organoclay up to 200°C, permitting the use of suchmaterial in the synthesis of polymer/clay nanocomposites obtained by the melt blending. Thus, Mg-montmorillonite can be intercalated with alkylammonium ions without prior Na-activation to form organoclays. The possibility of using natural (non-activated) Mg-montmorillonite represents a significant difference in terms of processing cost in comparison with existing Ca-montmorillonite in Brazil or even with imported bentonites that require Na-activation during beneficiation.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amorim, L.V., Gomes, C.M., Lira, H.L., França, K.B. & Ferreira, H.C. (2004) Bentonites from Boa Vista, Brazil: physical, mineralogical and rheological properties. Materials Research, 7, 583593.Google Scholar
Beneke, K. & Lagaly, G. (1982) The brittle mica-like KNiAsO4 and its organic derivatives. Clay Minerals, 17, 175183.Google Scholar
Borden, D. & Giese, R.F. (2001) Baseline studies of the Clay Minerals Society Source Clays: Cation exchange capacity measurements by the ammonia-electrode method. Clays and Clay Minerals, 49, 5, 44445.Google Scholar
Carrado, K.A. & Komadel, P. (2009) Acid activation of bentonites and polymer—clay nanocomposites. Elements, 5, 9398.Google Scholar
Clay Minerals Society (CMS) (2013) Glossary for Clay Science Project. http://www.clays.org/GLOSSARY/GlossIntro.html.Google Scholar
Delbem, M.F., Valera, T.S., Valenzuela-Diaz, F.R. & Demarquette, N.R. (2010) Modification of a Brazilian smectite clay with different quaternary ammonium salts. Química Nova, 33, 2, 309315.Google Scholar
Dohrmann, R., Genske, D., Karnland, O., Kaufhold, S., Kiviranta, L., Olsson, S., Tze, M.P., Sandén, T., Sellin, P., Svensson, D. & Valter, A., (2012) Interlaboratory CEC and exchangeable cation study of bentonite buffer materials: I. Cu(II)-triethylenetetramine method. Clays and Clay Minerals, 60, 2, 162175.Google Scholar
EMBRAPA - Brazilian Agricultural Research Corporation. (1998) Manual de Métodos de Análises de Solo. Ministry of Agriculture, Livestock and Food Supply.Google Scholar
Fatimah, I. & Huda, T. (2013) Preparation of cetyltrimethyl-ammonium intercalated Indonesian montmorillonite for adsorption of toluene. Applied Clay Science, 74, 115120.Google Scholar
Filippi, S., Paci, M., Rossi, F.B.D. & Polacco, G. (2013) XRD study of intercalation in statically annealed composites of ethylene copolymers and organically modified montmorillonites. 1. Two-tailed organoclays. Journal of the Taiwan Institute of Chemical Engineers, 44, 123130.Google Scholar
Greene-Kelly, R. (1952) Irreversible dehydration in montmorillonite, Clay Minerals Bulletin, 1, 221.Google Scholar
Grim, R.E. (1968) Clay Mineralogy. McGraw-Hill Book Co. Inc., New York. 596 pp.Google Scholar
Guggenheim, S., Adams, J.M., Bain, D.C., Bergaya, F., Brigatti, M.F., Drits, V.A., Formoso, M.L.L., Galán, E., Kogure, T. & Stanjek, H. (2006) Summary of recommendations of nomenclature committees relevant to clay mineralogy: report of the Association Internationale Pour l'Etude des Argiles (AIPEA) nomenclature committee. Clays and Clay Minerals, 54, 761772.Google Scholar
Guggenheim, S., Van, K. & Gross, A.F. (2001) Baseline studies of the Clay Minerals Society Source Clays: Thermal analysis. Clays and Clay Minerals, 49, 43343.Google Scholar
Güven, N. (2009) Bentonite - clays for molecular engineering. Elements, 5, 8992.Google Scholar
Harris, D.J., Bonagamba, T.J. & Schmidt-Rohr, K. (1999) Conformation of poly(ethylene oxide) intercalated in clay and MoS2 studied by two-dimensional double-quantum NMR. Macromolecules, 32, 67186724.CrossRefGoogle Scholar
He, H., Frost, R.L., Bostrom, T., Yuan, P., Duong, L., Yang, D., Xi, Y. & Kloprogge, J.T. (2006) Changes in the morphology of organoclays with HDTMA+ surfactant loading. Applied Clay Science, 31, 262271.Google Scholar
He, H., Frost, R. & Zhu, J. (2004) Infrared study of HDTMA+ intercalated montmorillonite. Spectrochimica Acta, Part A, 60, 28532859.Google Scholar
He, H.P., Ding, Z., Zhu, J.X., Yuan, P., Xi, Y.F., Yang, D. & Frost, R.L. (2005) Thermal characterization of surfactant-modified montmorillonites. Clays and Clay Minerals, 53, 286292.Google Scholar
He, H.P., Ma, Y.H., Zhu, J.X., Yuan, P. & Qing, Y.H. (2010) Organoclays prepared from montmorillonites with different cation exchange capacity and surfactant configuration. Applied Clay Science, 48, 6772.Google Scholar
Hedley, C.B., Yuan, G.B. & Theng, K.G. (2007) Thermal analysis of montmorillonites modified with quaternary phosphonium and ammonium surfactants. Applied Clay Science, 35, 180188.Google Scholar
Hofmann, U. & Klemen, E. (1950) Loss of exchangeability of lithium ions in bentonite on heating. Zeitschrift für Anorganishe und Allgemeine Chemie, 262, 9599.Google Scholar
Hu, Z., He, G., Liu, Y., Dong, C., Wu, X. & Zhao, W. (2013) Effects of surfactant concentration on alkyl chain arrangements in dry and swollen organic montmorillonite. Applied Clay Science, 75-76, 134140.Google Scholar
Lagaly, G. (1986) Interaction of alkylamines with different types of layered compounds. Solid State Ionics, 22, 4351.Google Scholar
Lagaly, G., Ogawa, M. & Dékány, I. (2006) Clay mineral organic interactions. Pp. 309–377 in: Handbook of Clay Science (F. Bergaya, B.K.G. Theng, & G. Lagaly, editors). Developments in Clay Science, 1, Elsevier, Amsterdam.Google Scholar
Lee, J.Y. & Lee, H.K. (2004) Characterization of organobentonite used for polymer nanocomposites. Materials Chemistry and Physics, 85, 410415.Google Scholar
Ma, Y., Zhu, J., He, H., Yuan, P., Shen, W. & Liu, D. (2010) Infrared investigation of organo-montmorillonites prepared from different surfactants. Spectrochimica Acta Part A. 76, 122129.Google Scholar
McAtee, J.L. (1959) Inorganic-organic cation exchange on montmorillonite. American Mineralogist, 44, 12301236.Google Scholar
Mermut, A.R. & Lagaly, G. (2001) Baseline studies of the Clay Minerals Society Source Clays: Layer-charge determination and characteristics of those minerals containing 2:1 layers. Clays and Clay Minerals, 49, 393397.Google Scholar
Mermut, A.R. (1994) Problems associated with layer charge characterization of phyllosilicates. Pp. 106-122 in: Layer Charge Characteristics of Clays, (A.R. Mermut, editor). CMS Workshop Lectures, 6, The Clay Minerals Society, Boulder, Colorado, USA. Google Scholar
Mermut, A.R. & Cano, A.F. (2001) Baseline studies of the clay minerals society source clays: Chemical analyses of major elements. Clays and Clay Minerals, 49, 381386.Google Scholar
Mermut, A.R. & St. Arnaud, R.J. (1990) Layer charge determination of high charge phyllosilicates by alkylammonium technique. 27th Annual Meeting of the Clay Minerals Society, Columbia, Missouri, Program and Abstracts, p. 86.Google Scholar
Moraes, D.S., Angélica, R.S., Costa, C.E.F., Rocha Filho, G.N. & Zamian, J.R. (2010) Mineralogy and chemistry of a new bentonite occurrence in the eastern Amazon region, northern Brazil. Applied Clay Science, 48, 47580.Google Scholar
Moore, D.M. & Reynolds, R.C. Jr. (1997) X-ray Diffraction and the Identification of Clay Minerals. Oxford University Press, New York.Google Scholar
Murray, H.H. (2007) Applied Clay Mineralogy: Occurrences, Processing and Application of Kaolins, Bentonites, Palygorskite-Sepiolite, and Common Clays. Elsevier, Amsterdam, pp. 111130.Google Scholar
Nikolaidis, A.K., Achilias, D.S. & Karayannidis, G.P. (2012) Effect of the type of organic modifier on the polymerization kinetics and the properties of poly (methyl methacrylate)/organomodified montmorillonite nanocomposites. European Polymer Journal, 48, 240251.Google Scholar
Paiva, L.B., Morales, A.R. & Díaz, F.R.V. (2008) Na overview on organophilic clays: properties, routes of preparation and applications. Applied Clay Science, 42, 824.Google Scholar
Paz, S.P.A., Angélica, R.S. & Neves, R.F. (2012) Mg-bentonite in the Parnaíba Paleozoic Basin, northern Brazil. Clays and Clay Minerals, 60, 3, 265277.Google Scholar
Ruiz-Hitzky, E. & Van Meerbeek, A. (2006) Clay mineral and organoclay-polymer nanocomposites Pp. 583-622 in: Handbook of Clay Science (F Bergaya, B.K.G. Theng, & G. Lagaly, editors). Developments in Clay Science, 1, Elsevier, Amsterdam.Google Scholar
Theng, B.K.G., Greenland, D.J. & Quirk, J.P. (1967) Adsorption of alkylammonium cations by montmorillonite. Clay Minerals, 7, 117.Google Scholar
Tsai, T.-Y., Lin, M.-J., Chuang, Y.-C. & Chou, P.-C. (2013) Effects of modified clay on the morphology and thermal stability of PMMA/clay nanocomposites. Materials Chemistry and Physics, 138, 230237.Google Scholar
Vaia, R.A., Teukolsky, R.K. & Giannelis, E.P. (1994) Interlayer structure and molecular environment of alkylammonium layered silicates. Chemistry of Materials, 6, 10171022.Google Scholar
Weers, J.G. & Scheuing, D.R. (1990) In Fourier Transform Infrared Spectroscopy in Colloid and Interface Science (D.R. Scheuing, editor); ACS Symposium Ser. 447, American Chemical Society, Washington, DC.Google Scholar
Wen, X., He, H., Zhu, J., Juna, Y., Ye, C. & Denga, F. (2006) Arrangement, conformation, and mobility of surfactant molecules intercalated in montmorillonite prepared at different pillaring reagent concentrations as studied by solid-state NMR spectroscopy. Journal of Colloid and Interface Science, 29, 754760.Google Scholar
Xi, Y., Ding, Z., He, H. & Frost, R.L. (2005) Infrared spectroscopy of organoclays synthesized with the surfactant octadecyltrimethylammonium bromide. Spectrochimica Acta Part A, 61, 515525.CrossRefGoogle Scholar
Xie, W., Gao, Z., Pan, W.-P., Hunter, D., Singh, A. & Vaia, R. (2001) Thermal degradation chemistry of alkyl quaternary ammonium montmorillonite. Chemistry of Materials, 13, 29792990.Google Scholar
Yariv, S. (2004) The role of charcoal on DTA curves of organo-clay complexes: an overview. Applied Clay Science, 24, 225236.CrossRefGoogle Scholar
Yildiz, A. & Kuscu, M. (2007) Mineralogy, chemistry and physical properties of bentonites from Baören, Kütahya W. Anatolia, Turkey. Clay Minerals, 42, 39914.Google Scholar
Zhou, Q., Frost, R.L., He, H., Xi, Y. & Liu, H. (2007) Adsorbed para-nitrophenol on HDTMAB organoclay—A TEM and infrared spectroscopic study. Journal of Colloid and Interface Science, 307, 357363.Google Scholar
Zhu, J., He, H., Zhu, L., Wen, X. & Deng, F. (2005) Characterization of organic phases in the interlayer of montmorillonite using FTIR and 13C NMR. Journal of Colloid and Interface Science, 286, 239244.Google Scholar