Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-20T03:51:53.315Z Has data issue: false hasContentIssue false

Observation of longitudinal acoustic phonons in layer-silicates by neutron inelastic scattering

Published online by Cambridge University Press:  09 July 2018

D. J. Cebula
Affiliation:
Institut Laue-Langevin, 156X Centre de Tri, 38042 Grenoble, France
M. C. Owen
Affiliation:
Physical Chemistry Laboratory, South Parks Road, Oxford, UK.
C. Skinner
Affiliation:
Physical Chemistry Laboratory, South Parks Road, Oxford, UK.
W. G. Stirling
Affiliation:
Institut Laue-Langevin, 156X Centre de Tri, 38042 Grenoble, France
R. K. Thomas
Affiliation:
Physical Chemistry Laboratory, South Parks Road, Oxford, UK.

Abstract

The technique of neutron inelastic scattering has demonstrated the presence of longitudinal acoustic phonons in two layer-silicate minerals. Values of the elastic constants determined from the dispersion curves have established the validity of the technique for this class of materials.

Resume

Resume

On a appliqué la méthode de diffusion inélastique des neutrons pour démontrer l'existence des phonons acoustiques et longitudinaux dans deux espèces de silicates en feuillets. D'après les courbes de dispersion on a obtenu des constantes élastiques établissant ainsi la méhode pour cette catégorie de matériaux.

Kurzreferat

Kurzreferat

Die Technik der inelastischen Neutronenbeugung zeigte die Anwesenheit longitudinaler akustischer Phononen in Zweischichtsilikaten. Die aus den Beugungskurven bestimmten Werte für die Elastizitätskon-stanten haben die Gültigkeit dieser Technik für derartige Materialien nachgewiesen.

Resumen

Resumen

Se ha aplicado la técnica de Difusión Inelástica de Neutrones, para demostrar la presencia de fonones acústicos longitudinales en dos silicatos laminares. Los valores de las constantes elásticas determinadas a partir de las curvas de dispersión, han establecido la validez de la técnica para esta clase de minerales.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baston, A.H. & Harris, D.H.C. (1978) Neutron Beam Instruments at Harwell. Report AERE R 9278, H.M.S.O., London.Google Scholar
Callaghan, I.C. & Ottewill, R.H. (1974) Interparticle forces in montmorillonite gels. Faraday Disc. Chem. Soc. 57, 110118.Google Scholar
Cebula, D.J., Thomas, R.K, Middleton, S., Ottewill, R.H. & White, J.W. (1979) Neutron diffraction from clay-water systems. Clays Clay Min. 27, 3952.Google Scholar
Cochran, W. (1973) The Dynamics of Atoms in Crystals. Edward Arnold, London.Google Scholar
C.R.C. (1977-78) Handbook of Chemistry and Physics, 58th Edn., table E-47. C.R.C Press Inc., Florida.Google Scholar
Giese, R.F. (1978) The electrostatic interlayer forces in layer-structure minerals. Clays Clay Miner. 26, 5157.Google Scholar
Horn, R.G. & Israelachvili, J.N. (1980) Direct measurement of forces due to solvent structure. Chem. Phys. Lett. 71, 192194.Google Scholar
Institut, Laue-Langevin (1981) Neutron Beam Facilities at the HFR Available for Users. Institut Laue-Langevin, Grenoble.Google Scholar
Israelachvili, J.N. & Adams, G.E. (1978) Measurement of forces between two mica surfaces in aqueous electrolyte solutions in the range 0-100 nm. J.C.S. Faraday I, 74, 9751001.Google Scholar
Verwey, E.J.W. & Overbeek, J.Th.G. (1948) Theory of Stability ofLyophobic Colloids. Elsevier, Amsterdam.Google Scholar