Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-09T12:57:44.180Z Has data issue: false hasContentIssue false

A new way of assessing clay cation adsorption using normalized salt concentration

Published online by Cambridge University Press:  09 July 2018

J . -L. Bersillon*
Affiliation:
Laboratoire Environnement et Minéralurgie, UMR 7569 CNRS - INPL, Centre de Recherche François Fiessinger, 15 avenue du Charmois, BP 40, F- 54501 Vandoeuvre cedex, France
*

Abstract

Kaolinite cation adsorption data are processed using recent gas adsorption concepts such as the undersaturation ∆m = ln (C/Cs) and the monolayer coverage y. This process shows that using the proper reference phase through its solubility Cs, it is possible to characterize adsorption sites that have the same adsorption energy regardless of the nature of the cation. Under mildly acidic conditions, a single ‘Langmuirian’ site category fits cation adsorption data whereas another family of sites is revealed in mildly alkaline conditions. These results suggest that at mildly acidic pH, only silanol sites are available to ion exchange and adsorption whereas at higher pH, a wider range of sites is made available, some of them displaying the same average adsorption energy and the others constituting a different category of sites with a much lower adsorption energy. This latter category is attributed to the aluminol sites.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bersillon, J.L., Villiéras, F., Bardot, F., Gorner, T. & Cases, J.M. (2001) Use of the gaussian distribution function as a tool to estimate continuous heterogeneity in adsorbing systems. Journal of Colloid and Interface Science, 240, 400411.CrossRefGoogle ScholarPubMed
Brady, P.V., Cygan, R.T. & Nagy, K.L. (1996) Molecular controls on kaolinite surface charge. Journal of Colloid and Interface Science, 183, 356364.CrossRefGoogle ScholarPubMed
Cases, J.M. & Mutaftschiev, B. (1968) Adsorption et condensation des chlorhydrates d’alkylamine à l’interface solide-liquide. Surface Science, 9, 5772.Google Scholar
Cases, J.M. & Villiéras, F. (1992) Thermodynamic model of ionic and non ionic surfactant adsorption-abstraction on heterogeneous surfaces. Langmuir, 8, 12511264.Google Scholar
Cases, J.M., Villiéras, F. & Michot, L.J. (2000) Les phénomènes d’adsorption, d’échange ou de rétention à l’interface solide-solution aqueuse: 1 Connaissance des propriétés structurales, texturales et superficielles des solides. Comptes Rendus de l’Académie des Sciences, Paris, Série II: Sciences de la terre et des planètes, 331, 111.Google Scholar
Ferris, A.P. & Jepson, W.B. (1975) The exchange capacities of kaolinite and the preparation of homoionic clays. Journal of Colloid and Interface Science, 51, 245258.CrossRefGoogle Scholar
Ikhsan, J., Johnson, B.B. & Wells, J.D. (1999) A comparative study of adsorption of transition metals on kaolinite. Journal of Colloid and Interface Science, 217, 403410.Google Scholar
Ma, C. & Eggleton, R.A. (1999) Cation exchange capacity of kaolinite. Clays and Clay Minerals, 47, 174180.Google Scholar
Mantin, I. & Glaeser, R. (1960) Fixation des ions cobaltihexamine par les montmorillonites acides. Bulletin du Groupe français des Argiles, 12, 8388.Google Scholar
Michot, L., François, M. & Cases, J.M. (1990) Surface heterogeneity studied by quasi-equilibrium gas adsorption procedure. Langmuir, 6, 677681.CrossRefGoogle Scholar
Michot, L.J. & Pinnavaia, T.J. (1991) Adsorption of chlorinated phenols from aqueous solution by surfactant modified pillared clays. Clays and Clay Minerals, 39, 634641.Google Scholar
Rémy, J.C. & Orsini, L. (1976) Utilisation du chlorure de cobaltihexamine pour la détermination simultanée de la capacitéd’échange et des bases échangeables des sols. Science du Sol, 4, 269275.Google Scholar
Rudzinski, W. & Everett, D.H. (1992) Adsorption of Gases on Heterogeneous Surfaces. Academic Press, New York.Google Scholar
Sposito, G. (1994) Chemical Equilibria and Kinetics in Soils . Pp 181201, Oxford University Press, Oxford, UK.Google Scholar
Villiéras, F., Cases, J.M., François, M., Michot, L. & Thomas, F. (1992) Texture and surface energetic heterogeneity of solids from modelling of low pressure gas adsorption isotherms. Langmuir, 8, 1789 –1795.CrossRefGoogle Scholar
Villiéras, F., Michot, L.J., Bardot, F., Cases, J.M., François, M. & Rudzinski, W. (1997a) An improved derivative isotherm summation method to study surface heterogeneity of clay minerals. Langmuir, 13, 11041117.Google Scholar
Villiéras, F., Michot, L.J., Cases, J.M., Berend, I., Bardot, F., François, M., Gérard, G. & Yvon, J. (1997b) Static and dynamic studies of the energetic surface heterogeneity of clay minerals. Pp. 573623 in: Equilibria and Dynamics of Gas Adsorption on Heterogeneous Solid Surface (Rudzinski, W., Steele, W.A. & Zgrablich, G., editors). Studies in Surface Science and Catalysis, 104. Elsevier Science Publishing, V.B., Amsterdam.Google Scholar
Weber, W.J. & DiGiano, F.A. (1996) Process Dynamics in Environmental Systems, pp. 317422. Wiley- Interscience, New York.Google Scholar