Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-24T01:53:26.907Z Has data issue: false hasContentIssue false

New data on the kaolinite-potassium acetate complex

Published online by Cambridge University Press:  09 July 2018

M. D. Ruiz Cruz
Affiliation:
Departamento de Química Inorgánica, Cristalografía y Mineralogía, Facultad de Ciencias, Campus de Teatinos, Universidad de Málaga, 29071 Málaga, Spain
F. I. Franco Duro
Affiliation:
Departamento de Química Inorgánica, Cristalografía y Mineralogía, Facultad de Ciencias, Campus de Teatinos, Universidad de Málaga, 29071 Málaga, Spain

Abstract

The intercalation complex of kaolinite and potassium acetate (KAc) was studied by HTXRD, IR spectroscopy and DTA-TG. The HTXRD patterns indicate that the 14.06 Å basal spacing of the complex contracts to 11.77 Å and 9.35 Å after heating at 60°C. The DTA-TG data indicate that water is present in these new complexes, the decomposition of which occurs between 290°C and 400°C. Modifications observed in the high-frequency region of the spectra obtained after heating suggest that K ions occupy the ditrigonal holes in the OH surface of the kaolinite layers, whereas water is probably located between the KAc layer and the OH surface of the kaolinite. This structural arrangement would favour the H-bonding between inner-surface OH groups and water and justifies the presence of new bands at lower frequencies. Electrostatic interactions between the keyed K ions and O of the inner OH groups would justify the modifications of the 3619 cm-1 OH-stretching band.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anton, O. & Rouxhet, P.G. (1977) Note on the intercalation of kaolinite, dickite and halloysite by dimethyl-sulfoxide. Clays Clay Miner. 25, 259263.CrossRefGoogle Scholar
Brown, G. & Brindley, G.W. (1980) X-ray diffraction procedures for clay mineral identification. Pp. 306—360 in: Crystal Structures of Clay Minerals and their X-ray Identification (Brindley, G.W. & Brown, G., editors), Mineralogical Society, London.Google Scholar
Farmer, V.C. (1974) The layer silicates. Pp. 331-359 in: Infrared Spectra of Minerals (Farmer, V.C., editor). Mineralogical Society, London.CrossRefGoogle Scholar
Farmer, V.C. & Russell, J.D. (1964) The infrared spectra of layer silicates. Spectrochim. Ada, 20, 11491173.CrossRefGoogle Scholar
Frost, R.L., Tran, T.H. & Kristof, J. (1997) The structure of an intercalated ordered kaolinite - a Raman microscopy study. Clay Miner. 32, 587596.CrossRefGoogle Scholar
Frost, R.L., Kristof, J., Paroz, J.N., Tran, T.H. & Kloprogge, J.T. (1998) The role of water in the intercalation of kaolinite with potassium acetate. J. Coll. Interf. Sci. 204, 227236.CrossRefGoogle ScholarPubMed
Gíbor, M., Toth, M., Kristof, J. & Gabor, K.H. (1995) Thermal behaviour and decomposition of intercalated kaolinite. Clays Clay Miner. 43, 223228.CrossRefGoogle Scholar
Johnston, C.T. & Stone, D.A. (1990) Influence of hydrazine on the vibrational modes of kaolinite. Clays Clay Miner. 38, 121128.CrossRefGoogle Scholar
Johnston, C.T., Sposito, G., Bocian, D.F. & Birg, R.R. (1984) Vibrational spectroscopic study of the interlamellar kaolinite-dimethylsulfoxide complex. J. Phys. Chem. 88, 59595964.CrossRefGoogle Scholar
Kodama, H. & Oinuma, K. (1963) Identification of kaolin minerals in the presence of chlorite by X-ray diffraction and infrared absorption spectra. Clays Clay Miner. 11, 236249.CrossRefGoogle Scholar
Kristóf, I., Mink I, Horváth, E. & Gábor, M. (1993) Intercalation study of clay minerals by Fourier transform infrared spectrometry. Vibr. Spectrosc. 5, 6167.CrossRefGoogle Scholar
Kristóf, I., Tóth, M., Gábor, M., Szabó, P. & Frost, R.L. (1997) Study of the structure and thermal behaviour of intercalated kaolinites. J. Thermal Anal. 49, 14411448.CrossRefGoogle Scholar
Lagaly, G. (1984) Clay organics reactions. Phil. Trans. R. Soc. Lond. A311, 315332.Google Scholar
MacEwan, D.M.C. & Wilson MJ. (1980) Interlayer and intercalation complexes of clay minerals. Pp. 197-248 in: Crystal Structures of Clay Minerals and their X-ray Identification (Brindley, G.W. & Brown, G., editors). Mineralogical Society, London.Google Scholar
Olejnik, S., Aylmore, L.A.G., Posner, A.M. & Quirk IP. (1968) Infrared Spectra of Kaolin Mineral-Dimethyl Sulfoxide Complexes. J. Phys. Chem. 72, 241249.CrossRefGoogle Scholar
Pretsch, E., Clerc, T., Seibl, J. & Simon, W. (1976) Espectroscopía de Infrarrojos. I-170 in: Tab las para la elucidación estructural de compuestos organicos por métodos espectroscópicos. Alhambra-Longman, Madrid.Google Scholar
Range, K.-J., Range, A. & Weiss, A. (1969) Fire-clay type kaolinite or fire-clay mineral? Experimental classification of kaolinite-halloysite minerals. Proc. Int. Clay Confi, Tokyo, 1, 311.Google Scholar
Raupach, M., Barron, P.F. & Thompson, J.G. (1987) Nuclear magnetic resonance, infrared, and X-ray powder diffraction study of dimethylsulfoxide and dimethylselenoxide intercalates with kaolinite. Clays Clay Miner. 35, 208219.CrossRefGoogle Scholar
Ruiz Cruz, M.D. (1996) Dickite, nacrite and possible dickite/nacrite mixed layers from the Betic Cordilleras (Spain). Clays Clay Miner. 44, 357369.CrossRefGoogle Scholar
Ruiz Cruz, M.D. & Moreno Real, L. (1991) Practical determination of allophane and synthetic alumina and iron oxide gels by X-ray diffraction. Clay Miner. 26, 337387.CrossRefGoogle Scholar
Wada, K. (1961) Lattice expansion of kaolin minerals by treatment with potassium acetate. Am. Miner. 46, 7891.Google Scholar
Wada, K. & Yamada, H. (1968) Hydrazine intercalationintersalation for differentiation of kaolin minerals from chlorites. Am. Mineral. 53, 334339.Google Scholar
Weiss, A., Thielepape, W. & Orth, H. (1966) Intercalation into kaolinite minerals. Proc. Int. Clay Confi, Jerusalem, I, 277-293.Google Scholar