Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-24T02:11:58.145Z Has data issue: false hasContentIssue false

Mössbauer spectra of α- and γ-polymorphs of FeOOH and Fe2O3 : effects of poor crystallinity and of Al-for-Fe substitution

Published online by Cambridge University Press:  09 July 2018

E. De Grave*
Affiliation:
Department of Subatomic and Radiation Physics, Division NUMAT, University of Ghent, B-9000 Ghent, Belgium
C. A. Barrero*
Affiliation:
Department of Subatomic and Radiation Physics, Division NUMAT, University of Ghent, B-9000 Ghent, Belgium
G. M. Da Costa*
Affiliation:
Department of Subatomic and Radiation Physics, Division NUMAT, University of Ghent, B-9000 Ghent, Belgium
R. E. Vandenberghe
Affiliation:
Department of Subatomic and Radiation Physics, Division NUMAT, University of Ghent, B-9000 Ghent, Belgium
E. Van San
Affiliation:
Department of Subatomic and Radiation Physics, Division NUMAT, University of Ghent, B-9000 Ghent, Belgium
*
Present address:, Institute of Physics, University of Antioquia, A.A. 1226 Medellin, Colombia
Present address: Department of Chemistry, Federal University of Ouro Preto, MGBrazil

Abstract

This paper presents various aspects, revealed by Mössbauer spectroscopy, of structural and magnetic properties of Al-substituted small-particle soil-related oxides. For goethite we focus on the relations between the hyperfine fields on the one hand, and crystallinity and Al content on the other. It is argued that these relations only provide a rough estimate of the Al content in natural samples. The ferrimagnetic-like behaviour reflected in the external-field Mössbauer spectra (4.2 K, 60 kOe) of certain Al goethites is presented. The spectra obtained for lepidocrocites are not spectacular, but confirmed that up to ∼10 at.% Al can be incorporated in the structure. Three differently-made series of hematites are considered. The Morin transition and spin structures in hematite are very sensitive to crystallinity and Al content, and probably to the presence of structural OH. Integral low-energy electron Mössbauer spectroscopy on non-substituted samples indicates that the Morin-transition temperature in the surface layers (2 to 5 nm) is not significantly shifted from the bulk value. Measurements in extremely high magnetic fields (140 kOe) have shown that a spin-flip transition is induced in highly-substituted samples which exhibit no Morin transition in zero field. The use of external fields is crucial for the characterization and precise determination of the hyperfine parameters and site occupancies for maghemites, and for phase analyses of magnetic soils.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amarasiriwardena, D.D., De Grave, E. & Bowen, L.H. (1986) Quantitative determination of aluminum-substituted goethite-hematite mixtures by Mössbauer spectrosc opy. Clays and Clay Minerals, 34, 250256.Google Scholar
Amarasiriwardena, D.D., Bowen, L.H. & Weed, S.B. (1988) Characterization and quantification of aluminum- substituted hematite-goethite mixtures by X-ray diffraction, and infrared and Mössbauer spectroscopy. Soil Science Society of America Journal, 52, 11791186.Google Scholar
Banin, A., Ben-Shlomo, T., Margulies, L., Blake, D.F., Mancinelli, R.L. & Gehring, A.U. (1993) The nanophase iron mineral(s) in Mars Soil. Journal of Geophysical Research, 98, 20, 831 ­ 20, 853.Google Scholar
Barrero, C.A., Vandenberghe, R.E., De Grave, E. & da Costa, M.G. (1996) A qualitative analysis of the Mössbauer spectra of aluminous goethites based on existing models. Pp. 717720 in: Proceedings of the International Conference on the Applications of the Mössbauer effect, ICAME-95 (Ortalli, I., editor). Italian Physical Society, Bologna, Italy.Google Scholar
Barrero, C.A., Vandenberghe, R.E. & De Grave, E. (1999) The effect of Al content and crystallinity on the magneti c proper ties of goethi te. Hyperf ine Interactions, 122, 3946.Google Scholar
Bocquet, S. & De Grave, E. (1994) The magnetichyperfine- field distribution in aluminous haematite. Journa l of Physics : Condens ed Matt er, 6, 68256832.Google Scholar
Bocquet, S. & Kennedy, S.J. (1992) The Néel temperature of fine particle goethite. Journal of Magnetism and Magnetic Materials, 109, 260264.Google Scholar
Bocquet, S., Pollard, R.J. & Cashion, J.D. (1992) Dynamic magnetic phenomena in fine particle goethite. Physical Review B, 46, 1165711664.CrossRefGoogle ScholarPubMed
Bowen, L.H. & De Grave, E. (1995) Mössbauer spectra in external field of highly substituted aluminous hematites. Journal of Magnetism and Magnetic Materials, 139, 610.Google Scholar
Bowen, L.H., De Grave, E., de Bakker, P.M.A. & Vandenberghe, R.E. (1990) Hyperfine interactions of aluminum-substituted goethites in external magnetic fields. Hyperfine Interactions, 54, 467472.Google Scholar
Bowen, L.H., De Grave, E. & Bryan, A.M. (1994) Mössbauer studies of well-crystallized Al-maghemites made from hematite. Hyperfine Interactions, 94, 19771982.Google Scholar
Cheng, T., Bereman, R., De Grave, E. & Bowen, L.H. (2001) A study of aluminum-substituted iron dextran complexes by Mössbauer spectroscopy and X-ray diffraction. Chemistry of Materials, 13, 136140.CrossRefGoogle Scholar
Clark, B.C., Baird, A.K., Weldon, R.J., Tsusaki, D.M., Schnabel, L. & Candelaria, M.P. (1982) Chemical composi tion of mart ian f ines. Journal of Geophysical Research, 87, 10, 059 ­ 10, 067.Google Scholar
Cornell, R.M. & Schwertmann, U. (1996) The Iron Oxides. VCH, Weinheim, Germany.Google Scholar
Dang, M.Z., Rancourt, D.G., Dutrizac, J.E., Lamarche, G. & Provencher, R. (1998) Interplay of surface conditions, particle size, stoichiometry, cell parameters and magnetism in synthetic hematite-like materials. Hyperfine Interactions, 117, 271319.Google Scholar
da Costa, G.M., De Grave, E., Bowen, L.H., de Bakker, P.M.A. & Vandenberghe, R.E. (1995a) Temperature dependence of the hyperfine parameters of maghemite and Al-substituted maghemites. Physics and Chemistry of Minerals, 22, 178185.Google Scholar
da Costa, G.M., De Grave, E., Bowen, L.H., de Bakker, P.M.A. & Vandenberghe, R.E. (1995b) Variabletemperature Mössbauer spectroscopic study of nanosized maghemite and Al-substituted maghemites. Clays and Clay Minerals, 43, 562568.Google Scholar
da Costa, G.M., De Grave, E., de Bakker, P.M.A. & Vandenberghe, R.E. (1995c) Influence of nonstoichiometry and the presence of maghemite on the Mössbauer spectrum of magnetite. Clays and Clay Minerals, 43, 656668.Google Scholar
da Costa, G.M., Laurent, Ch., De Grave, E. & Vandenberghe, R.E. (1996) A comprehen sive Mössbauer study of highly-substituted aluminum maghemites. Pp. 93104 in: Mineral Spectroscopy: A Tribute to Roger G. Burns (Dyar, M.D., McCammon, C. & Schaefer, W., edit ors). The Geochemical Society, Houston, Texas, USA.Google Scholar
da Costa, G.M., Van San, E., De Grave, E., Vandenberghe, R.E., Barron, V. & Datas, L. (2002) Al hematites prepared from homogeneous precipitations of oxinates: Material characterization and determination of the Morin transition. Physics and Chemistry of Minerals, 29, 122131.Google Scholar
De Bakker, P.M.A., De Grave, E., Persoons, R.M., Bowen, L.H. & Vandenberghe, R.E. (1990) An improved, two-parameter distribution method for the description of the Mössbauer spectra of magnetic small particles in an applied field. Measurements in Science and Technology, 1, 954964.Google Scholar
de Boer, C.B. (1999) Rock-magnetic studies on hematite, maghemite and combustion-metamorphic rocks. PhD thesis, University of Utrecht, The Netherlands.Google Scholar
De Grave, E. & Vandenberghe, R.E. (1986) 57Fe Mössbauer effect study of well-crystallized goethite (α-FeOOH). Hyperfine Interactions, 28, 643646.Google Scholar
De Grave, E., Bowen, L.H. & Weed, S.B. (1982) Mössbauer study of aluminum-substituted hematite. Journal of Magnetism and Magnetic Materials, 27, 98108.Google Scholar
De Grave, E., Verbeeck, A.E. & Chambaere, D.G. (1985) Influence of small aluminum substitutions on the hematite lattice. Physics Letters, 107A, 181184.Google Scholar
De Grave, E., Persoons, R.M., Chambaere, D.G., Vandenberghe, R.E. & Bowen, L.H. (1986) An 57Fe Mössbauer effect study of poorly crystalline γ- FeOOH. Physics and Chemistry of Minerals, 13, 6167.Google Scholar
De Grave, E., Bowen, L.H., Vochten, R. & Vandenberghe, R.E. (1988) The effect of crystallinity and Al substitution on the magnetic structure and Morin transition in hematite. Journal of Magnetism and Magnetic Materials, 72, 141151.Google Scholar
De Grave, E., de Bakker, P.M.A., Bowen, L.H. & Vandenberghe, R.E. (1992) Effect of crystallinity and Al substitution on the applied-field Mössbauer spectra of iron oxides and oxyhydroxides. Zeitschrift für Pflanzenernährung Düngung und Bodenkunde, 155, 467472.Google Scholar
De Grave, E., da Costa, G.M., Bowen, L.H., Schwertmann, U. & Vandenberghe, R.E. (1996a) 57Fe Mössbauer effect study of Al-substituted lepidocrocites. Clays and Clay Minerals, 44, 214219.Google Scholar
De Grave, E., Dauwe, C., Bowen, L.H. & Vandenberghe, R.E. (1996b) ILEEMS at variable temperature of small-par ticle α-Fe2O3 and a-Fe1.87Al0.13O3 . Hyperfine Interactions (C), 1, 286289.Google Scholar
De Grave, E., da Costa, G.M., Bowen, L.H., Barrero, C.A. & Vandenberghe, R.E. (1998) Characterisation of soil-oxide analogs by applied-field 57Fe Mössbauer spectroscopy. Hyperfine Interactions, 117, 245270.Google Scholar
Friedl, J. & Schwertmann, U. (1996) Aluminium influence on iron oxides. XIX. The effect of Al substitution and crystal size on magnetic hyperfine fields of natural goethites. Clay Minerals, 31, 455464.Google Scholar
Fysh, S.A. & Clark, P.E. (1982) Aluminous hematite: A Mössbauer study. Physics and Chemistry of Minerals, 8, 257267.Google Scholar
Golden, D.C., Bowen, L.H., Weed, S.B. & Bigham, J.M. (1979) Mössbauer studies of synthetic and soiloccurring aluminum-su bstituted goethites. Soil Science Society of America Journal, 43, 802808.Google Scholar
Goulart, A.T., Fabris, J.D., de Jesus Filho, M.F., Coey, J.M.D., da Costa, G.M. & De Grave, E. (1998) Iron oxides in a soil developed from basalt. Clays and Clay Minerals, 46, 369378.Google Scholar
Klingelhöfer, G., Held, P., Bernhardt, B. Foh, J., Teucher, R. & Kankeleit, E. (1998) In-situ phase analysis by a versatile miniaturized Mössbauer spectrometer. Hyperfine Interactions, 111, 331334.Google Scholar
Mathieu, F. & Rousset, A. (1993) Structural analysis of the transformation mechanisms in iron oxides and oxyhydroxides. Philosophical Magazine, A67, 533555.Google Scholar
Morrish, A.H. (1994) Canted Antiferromagneti sm: Hematite, pp. 1192. World Scientific, Singapore.Google Scholar
Mørup, S. (1987) Mössbauer effect studies of microcrystalline materials. Pp. 89124 in Mössbauer Spectroscopy Applied to Inorganic Chemistry,Vol. 2 (Long, G.J., editor). Plenum Press, New York.Google Scholar
Mullins, C.E. (1977) Magnetic susceptibility of the soil and its significance in soil science ­ a review. Journal of Soil Science, 28, 223246.CrossRefGoogle Scholar
Murad, E. & Johnston, J.H. (1987) Iron oxides and oxyhydro xides. Pp. 507582 in: Mössbauer Spectroscopy Applied to Inorganic Chemistry,Vol. 2 (Long, G.J., editor). Plenum Press, New York.Google Scholar
Murad, E. & Schwertmann, U. (1983) The influence of Al substitution and crystallinity on the Mössbauer spectra of goethite. Clay Minerals, 18, 301312.CrossRefGoogle Scholar
Murad, E. & Schwertmann, U. (1984) The influence of crystallinity on the Mössbauer spectrum of lepidocrocite. Mineralogical Magazine, 48, 507511.CrossRefGoogle Scholar
Oh Sei, J., Cook, D.C. & Townsend, H.E. (1998) Characterization of iron oxides commonly formed as cor rosi on product s on steel. Hyperfi ne Interactions, 112, 5965.Google Scholar
Pankhurst, Q.A., Johnson, C.E. & Thomas, M.F. (1986) A Mössbauer study of magnetic phase transitions in a-Fe2O3 crystals. Journal of Physics C: Solid State Physics, 19, 70817098.Google Scholar
Pollard, R.J., Pankhurst, Q.A. & Zientek, P. (1991) Magnetism in aluminous goethite. Physics and Chemistry of Minerals, 18, 259264.Google Scholar
Schulze, D.G. & Schwertmann, U. (1984) The influence of aluminium on iron oxides: X. Properties of Alsubstituted goethites. Clay Minerals, 19, 521539.Google Scholar
Schwertmann, U. & Cornell, R.M. (2000) Iron Oxides in the Laboratory. VCH, Weinheim, Germany.Google Scholar
Schwertmann, U. & Wolska, E. (1990) The influence of aluminum on iron oxides. XV. Al-for-Fe substitution in synthetic lepidocrocite. Clays and Clay Minerals, 38, 209212.Google Scholar
Schwertmann, U., Fitzpatrick, R.W., Taylor, R.M. & Lewis, D.G. (1979) The influence of aluminum on iron oxides. Part II. Preparation and properties of Alsubstituted hematites. Clays and Clay Minerals, 27, 105112.Google Scholar
Schwertmann, U.,Cambier, Ph. & Murad, E. (1985) Properties of goethites of varying crystallinity. Clays and Clay Minerals, 33, 369378.Google Scholar
Stanjek, H. & Schwertmann, U. (1992) The influence of aluminum on iron oxides. Part XVI. Hydroxyl and aluminum substitution in synthetic hematites. Clays and Clay Minerals, 40, 347354.Google Scholar
Taylor, R.M. & Schwertmann, U. (1974) Maghemite in soils and its origin. I. Properties and observations on soil maghemites. Clay Minerals, 10, 289298.CrossRefGoogle Scholar
Taylor, R.M. & Schwertmann, U. (1978) The influence of aluminum on iron oxides. Part I. The influence of Al on Fe oxide formation from the Fe(II) system. Clays and Clay Minerals, 26, 373383.Google Scholar
Taylor, R.M. & Schwertmann, U. (1980) The influence of aluminum on iron oxides. VII. Substitution of Al for Fe in synthetic lepidocrocite. Clays and Clay Minerals, 28, 267271.Google Scholar
Torrent, J., Barrón, V. & Schwertmann, U. (1990) Phosphate adsorption and desorption by goethites differing in crystal morphology. Soil Science Society of America Journal, 54, 10071012.Google Scholar
Vandenberghe, R.E., De Grave, E., De Geyter, G. & Landuydt, C. (1986) Characterization of goethite and hematite in a Tunisian soil profile by Mössbauer spectrosc opy. Clays and Clay Minerals, 34, 275280.Google Scholar
Vandenberghe, R.E., De Grave, E. & de Bakker, P.M.A. (1994) On the methodology of the analysis of Mössbauer spectra. Hyperfine Interactions, 83, 2949.Google Scholar
Vandenberghe, R.E., Hus, J.J. & De Grave, E (1998) Evidence from Mössbauer spectroscopy of neoformation of magnetite/maghemite in the soils of loess/paleosol sequences in China. Hyperfine Interactions, 117, 359369.Google Scholar
Vandenberghe, R.E., Barrero, C.A., da Costa, G.M., Van San, E. & De Grave, E. (2000) Mössbauer charaterization of iron oxides and (oxy)hydroxides: the present state of the art. Hyperfine Interactions, 126, 247259.Google Scholar
Vandenberghe, R.E., Van San, E., De Grave, E. & da Costa, G.M. (2001) About the Morin transition in hematite in relation with particle size and aluminium substitution. Czech Journal of Physics, 51, 663675.CrossRefGoogle Scholar
Van San, E., De Grave, E., Vandenberghe, R.E., Desseyn, H.O., Datas, L., Barron, V. & Rousset, A. (2001) Study of Al-substituted hematites prepared from thermal treatment of lepidocrocite. Physics and Chemistry of Minerals, 28, 488497.Google Scholar
Wivel, C.O. & Mørup, S. (1981) Improved computational procedure for evaluation of overlapping hyperfine parameter distribution s in Mössbauer spectra. Journal of Physics E, 14, 605610.Google Scholar
Zysler, R.D., Vasquez-Mansilla, M., Arciprete, C., Dimitrijewits, M., Rodriguez-Sierra, D. & Saragovi, C. (2001) Structure and magnetic properties of thermally treated nanohematite. Journa l of Magnetism and Magnetic Materials, 224, 3948.Google Scholar