Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T16:20:14.705Z Has data issue: false hasContentIssue false

Mössbauer and X-ray data on β-FeOOH (akaganéite)

Published online by Cambridge University Press:  09 July 2018

E. Murad*
Affiliation:
Institut für Bodenkunde der T. U. München, D-8050 Freising-Weihenstephan, West Germany

Abstract

β-FeOOH (akaganéite) was prepared by slow hydrolysis of an FeCl3 solution. X-ray diffraction measurements gave refined unit-cell parameters of a=10·535 Å, c=3·030 Å.

Two doublets with δ(Fe)=0·39, ΔEQ=0·95, and δ=0·38, ΔEQ=0·55 mm s−1, respectively, can be fitted to the Mössbauer spectrum taken at room temperature.

Magnetically split Mössbauer spectra were registered at 135 and 4°K. These can be resolved into at least three superimposed sextets, corresponding to different Fe3+ sites in the β-FeOOH structure. At 4°K a three sextet model gives parameters of δ=0·36, ΔEQ=0·90, Hi=473; δ=0·35, ΔEQ=0·30, Hi=479; and δ=0·37, ΔEQ=−0·05 mm s−1, Hi=486kOe, respectively.

The complexity of the Mössbauer spectra of β-FeOOH limits the usefulness of this method as a tool for the identification of akaganéite in composite natural samples.

Résumé

Résumé

β-FeOOH (akaganéite) a été préparé par hydrolyse lente d'une solution de FeCl3. Les mesures par diffraction X ont donné des valeurs améliorées des paramètres de maille, a=10·535 Å, c=3·030 Å.

On peut faire correspondre au spectre Mössbauer pris à température ambiante deux doublets avec respectivement δ(Fe)=0·39, ΔEQ=0·95 et δ=0·38, ΔEQ=0·55 mm s−1.

Des spectres Mössbauer dédoublés magnétiquement ont été observés à 135°K et à 4°K. Ceux-ci peuvent être résolus en au moins trois sextuplets superposés,correspondant à des sites Fe3+ différents dans la structure β=FeOOH. A 4°K un modèle à trois sextuplets donne des paramètres de δ=0·36, ΔEQ=0·90, Hi=473; δ=0·35, ΔEQ=0·30, Hi=479; et δ=0·37, ΔEQ=0·05 mm s−1, Hi=486 kOe, respectivement.

La complexité des spectres Mössbauer de β-FeOOH limite l'utilité de cette méthode comme outil pour l'identification de l'akaganéite dans des échantillons composites naturels.

Kurzreferat

Kurzreferat

β-FeOOH (Akaganéit) wurde durch langsame Hydrolyse einer FeCl3-Lösung hergestellt. Mittels Röntgenbeugung wurden verfeinerte Elementarzellenabmessungen von a=10·535, c=3·030 Å ermittelt.

Zwei Dubletts mit δ(Fe)=0·39, ΔEQ=0·95, bzw. δ=0·38, ΔEQ=0·55 mm s−1 konnten an das Zimmertemperatur-Mößbauerspektrum angepaßt werden.

Magnetisch aufgespaltene Mößbauerspektren wurden bei 135 und 4°K aufgezeichnet. An diese können mindestens drei sich gegenseitig überlagernde Sextetts angepaßt werden, die verschiedenen Fe3+-Lagen im β-FeOOH Gitter entsprechen. Bei 4°K ergab ein derartiges drei-Sextett Modell Modell Parameter von δ=0·36, ΔEQ=0·90, Hi=473; δ=0·35, ΔEQ=0·30, Hi=479; und δ=0·37, ΔEQ=−0·05 mm s−1, Hi=486kOe.

Die Tatsache, daß die Mößbauerspektren desβ-FeOOH derart kompliziert sind, beschränkt Anwendbarkeit der Methode zur Identifizierung des Akaganéits in natürlichen Vielstoffsystemen.

Resumen

Resumen

Se preparó β-FeOOH (acaganeita) por hidrólisis lenta de una solución de FeCl3. Las mediciones por difracción de rayos X dieron parámetros de malla refinada de a=10·535 Å, c=3·030Å.

Dos dobletes con δ(Fe)=0·39, ΔEQ=0·95, y δ=0·38, ΔEQ=0·55 mm s−1, respectivamente, pueden encajar en el espectro de Mössbauer tomado a la temperatura ambiente del cuarto.

Se registraron espectros de Mössbauer divididos magnéticamente a 135 y 4°K. Estos pueden resolverse en por lo menos tres sextetos superpuestos, que corresponden a distintos sitios de Fe3+ en la estructura β-FeOOH. A 4°K un modelo de tres sextetos arroja parámetros de δ=0·36, ΔEQ=0·90, Hi=473; δ=0·35, ΔEQ=0·30, Hi=479; y δ=0·37, ΔEQ=0·05 mm s, Hi=486 kOe, respectivamente.

La complejidad de los espectros de Mössbauer de β-FeOOH limita la utilidad de este método como medio de identificación de la acaganeita en muestras naturales mixtas.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

DéZsi, I, Keszthelyi, L, Kulgawczuk, D, Molnàr, B & Eissa, N.A. (1967) Phys. stat. sol. 22, 617.CrossRefGoogle Scholar
Galbraith, ST., Baird, T & Fryer, J.R. (1979) Acta Cryst. A35, 197.CrossRefGoogle Scholar
Gallagher, K.J. (1970) Natur. 226, 1225.Google Scholar
Hanzel, D & Sevsek, F (1975) J. Physique 37, C6-277.Google Scholar
Herzenberg, C.L. & Toms, D (1966) J. geophys. Res. 71, 2661.CrossRefGoogle Scholar
Hogg, C.S., Malden, P.J. & Meads, R.E. (1975) Mineralog. Mag. 40, 89.CrossRefGoogle Scholar
Howe, A.T. & Gallagher, K.J. (1975) J. chem. Soc. Faraday Trans. I, 22.Google Scholar
Janik, L.J. & Raupach, M (1977) CSIRO Aust. Div. Soils Tech. Pape. 35, 37p.Google Scholar
Johnston, J.H. (1977) Geochim. cosmochim. Act. 41, 539.Google Scholar
Johnston, J.H. & Logan, N.E. (1979) J. chem. Soc. Dalton 13.Google Scholar
Kodamah, J, Mckeague, J.A., Tremblayr, J, Gosselin, J.R. & Townsendm, G. (1977) Can. J. Earth Sci. 14, 1.Google Scholar
Kubsch, H, Fritzsch, E & Baum, H (1972) Krist. Techn. 7, K77.CrossRefGoogle Scholar
Logan, N.E., Johnston, J.H. & Childs, C.W.C. (1976) Aust. J. Soil Res. 14, 217.Google Scholar
Mackay, A.L. (1960) Mineralog. Mag. 32, 545.Google Scholar
Meisel, W & Kreysa, G (1973) Z anorg. allg. Chem. 295, 31.Google Scholar
Moreira, J.E., Knudsen, J.M., De LIMA, C.G. & Dufresne, A (1973) Anal. Chini. Act. 63, 295.CrossRefGoogle Scholar
Nakamura, T & Shimizu, S (1964) Bull. Inst. chem. Res. Kyoto Univ. 42, 292.Google Scholar
Paterson, E & Tait, J.M. (1977) Clay Miner. 12, 345.Google Scholar
Rossiter, M.J. & Hodgson, A.E.M. (1965) J. inorg. nucl. Chem. 27, 63.Google Scholar
Sprenkel-Segel, E.L. (1970) J. geophy.s. Res. 75, 6618.CrossRefGoogle Scholar
Terrell, J.H. & Spijkerman, J.J. (1968) Appi. Phys. Leu. 13, 11.Google Scholar
Voznyuk, P.O. & Dubinin, V.N. (1973) Soviet. Phys. solid St. 15, 1265.Google Scholar
Watson, J.H.L., Cardell, R.R. & Heller, W (1962) J . phys. Chem. 66, 1757.Google Scholar
Weiser, H.B. & Milligan, W.O. (1935) J . Am. chem. Soc. 57, 238.Google Scholar
Yamamoto, N (1968) Bull. Inst. chem. Res. Kyoto Univ. 46, 275.Google Scholar