Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-23T16:04:32.060Z Has data issue: false hasContentIssue false

Montmorillonite-Asulam interactions: II. Catalytic decomposition of Asulam adsorbed on Mg-, Ba-, Ca-, Li-, Na-, K- and Cs-clay

Published online by Cambridge University Press:  09 July 2018

G. G. Ristori
Affiliation:
Centro di Studio per i Colloidi del Suolo del C.N.R.
P. Fusi
Affiliation:
Istituto di Chimica Agraria e Forestale dell'Università di Firenze, Piazzale delle Caseine 28, 50144 Firenze, Italy
M. Franci
Affiliation:
Centro di Studio per i Colloidi del Suolo del C.N.R.

Abstract

Asulam (p-aminobenzenesulphonylmethylcarbamate) is adsorbed by alkaline and alkaline-earth cation saturated montmorillonites at room temperature either by protonation or by physical forces. On heating it decomposes to different products depending on the polarizing power of the exchange cation. On Mg–clay, sulphanilic and carbamic acid are obtained; the latter decomposes after equilibration at 100% relative humidity. In Ba– and Ca–systems, sulphanilamide and sulphanilic acid are produced with minor amounts of p–aminobenzenesulphonylcarbamate anion. Sulphanilamide is the main decomposition product in Na–, K–and Cs–systems. On Li–clay, decomposition of the Asulam results in the formation of p–aminobenzenesulphonylcarbamate anion and p–aminobenzenesulphonylcarbamic acid, probably as a consequence of the intermediate polarizing power of this cation.

Résumé

Résumé

L'asulam (p–aminobenzenesulfonylcarbamate de méthyle) est adsorbé à température ordinaire par des montmorillonites saturées en cations alcalins ou alcalino-terreux soit par protonation soit par adsorption physique. Lors du chauffage, la molécule se décompose en divers produits, fonctions du pouvoir polarisant du cation échangeable. Sur les argiles-Mg on obtient les acides sulfanilique et carbamique; ce dernier se décompose lorsqu'on équilibre le produit avec une atmosphère à 100 % d'humidité relative. En présence de Ba et Ca on produit l'acide sulfanilique et son amide avec des traces d'anions p–aminobenzenesulfonylcarbamate. L'amide est le produit principal de la décomposition dans les systèmes Na, K et Cs. Sur les argiles Li la décomposition de l'asulam forme l'anion p-aminobenzene-sulfonyl carbamate et l'acide correspondant vraisemblablement par suite du pouvoir polarisant intermédiaire de ce cation.

Kurzreferat

Kurzreferat

Asulam (p–aminobenzolsulphonylmethylcarbamat) wird bei Raumtemperatur entweder durch Protonisierung oder physikalische Kräfte absorbiert. Beim Erhitzen zerfällt es in verschiedene Produkte, welche von der Polarisierungsfähigkeit des Austauschkations abhängen. So erhält man bei Mg-Ton Sulphanil- und Carbamidsäure; letztere zerfällt nach Gleichgewicht-seinstellung bei 100% rel. Luftfeuchtigkeit. In Ba– und Ca–Systemen entstehen Sulphanilamide und Sulphanilsäure mit geringen Mengen des p–aminobenzolsulphonylcarbamat-Anions. Sulphanilamid stellt das Hauptzersetzungsprodukt in Na–, K– und Cs-Systemen dar. Mit Li-Ton führt der Asulamabbau zur Bildung von p-Aminobenzolsulphonylcarbamidsäure. Wahrscheinlich ist dies die Konsequenz der mittleren Polarisationskraft dieses Kations.

Resumen

Resumen

El Asulam (p–aminobencenosulfonil-metilcarbamato) es adsorbido a temperatura ambiente por montmorillonitas saturadas con cationes alcalinos y alcalinotérreos, por protonación o adsorción fisica. El calor descompone el complejo obteniéndose diferentes productos dependiendo del poder polarizante del catión de cambio. En la arcilla magnésica se obtienen los ácidos sulfonílico y carbámico, siendo este último descompuesto cuando la muestra se pone en equilibrio a 100% humedad relativa. En los sistemas Ca y Ba se producen la sulfanilamida, el ácido sulfanílico y en menor cantidad el anión p-aminobencenosulfonilcarbamato. La sulfanilamida es el principal producto de descomposición en los sistemas Na, K y Cs. En la arcilla lítica, la descomposición del Asulam da lugar a la formación del anión p–aminobencenosulfonil carbamato y del ácido p–aminobencenosulfonilcarbámico, probablemente debido al valor intermedio del poder polarizante de este catión.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bellamy, L.J. (1958) The Infrared Spectra of Complex Molecules. Methuen, London. Google Scholar
Cloos, P., Moreale, A., Broers, C. & Badot, C. (1979) Adsorption and oxidation of aniline and p-chloroaniline by montmorillonite. Clay Miner. 14, 307321.Google Scholar
Farmer, V.C. & Mortland, M.M. (1966) An infrared study of the co-ordination of pyridine and water to exchangeable cations in montmorillonite and saponite. J. Chem. Soc. 1966A, 344351.Google Scholar
Farmer, W.J. & Ahlrichs, J.L. (1969) Infrared studies of the mechanism of adsorption of urea-d4, methylurea-d3, and l,l-dimethylurea-d2 by montmorillonite. Proc. Soil Sci. Soc. Am. 33, 254258.Google Scholar
Fripiat, J.J., Servais, A. & Leonard, A. (1962) Etude de l'adsorption des amines par les montmorillonites. III-la nature de la liason amine-montmorillonite. Bull. Soc. chim. Fr. 636644.Google Scholar
Fusi, P., Ristori, G.G. & Malquori, A. (1980) Montmorillonite-Asulam interactions: I. Catalytic decomposition of Asulam adsorbed on H- and Al-clay. Clay Miner. 15, 147155.Google Scholar
Ganguly, L., Jose, C.I. & Biswas, A.B. (1968) Infrared spectra of dipolar isomeric aminobenzene sulphonic acids. Spectrochim. Acta 24A, 215218.Google Scholar
Goldstein, M., Russell, M.A. & Willis, H.A. (1969) The infrared spectra of N-substituted sulphonamides. Spectrochim. Acta 25A, 12751285.CrossRefGoogle Scholar
Laura, R.D. & Clods, P. (1975) Adsorption of ethylendiamine (EDA) on montmorillonite saturated with different cations-III. Na-, K- and Li- montmorillonite: ion-exchange, protonation, co-ordination and hydrogen-bonding, Clays Clay Miner. 23, 6169.CrossRefGoogle Scholar
Mortland, M.M. (1966) Urea complexes with montmorillonite: an infrared absorption study. Clay Miner. 6, 143156.Google Scholar
Mortland, M.M. & Barake, N. (1964) Interaction of ethylamine and metal ions on montmorillonite. Trans. 8th Int. Congr. Soil Sci. III, 433442.Google Scholar
Mortland, M.M., Fripiat, J.J., Chaussidon, J. & Uytterhoeven, J. (1963) Interaction between ammonia and the expanding lattices of montmorillonite and vermiculite, J. phys. Chem. 67, 248258.Google Scholar
Mortland, M.M. & Meggitt, W.F. (1966) Interaction of ethyl N,N-Di-n-propylthiolcarbamate (EPTC) with montmorillonite. J. Agric. Fd Chem. 14, 126129.Google Scholar
Mortland, M.M. & Raman, K.V. (1967) Catalytic hydrolysis of some organic phosphate pesticides by copper (II). J. Agric. Fd Chem. 15, 163167.Google Scholar
Mortland, M.M. & Raman, K.V. (1968) Surface acidity of smectites in relation to hydration, exchangeable cation, and structure. Clays Clay Miner. 16, 393398.CrossRefGoogle Scholar
Parfitt, R.L. & Mortland, M.M. (1968) Ketone adsorption on montmorillonite. Proc. Soil Sci. Soc. Am. 32, 355363.CrossRefGoogle Scholar
Russell, J.D. (1965) Infrared study of the reactions of ammonia with montmorillonite and saponite. Trans. Faraday Soc. 61, 22842294.CrossRefGoogle Scholar
Tahoun, S. A. & Mortland, M.M. (1966a) Complexes of montmorillonite with primary, secondary and tertiary amides. I: protonation of amides on the surface of montmorillonite. Soil Sci. 102, 248254.Google Scholar
Tahoun, S. A. & Mortland, M.M. (1966b) Complexes of montmorilllonite with primary, secondary and tertiary amides. II: coordination of amides on the surfaces of montmorillonite. Soil Sci. 102, 314321.Google Scholar
Walsh, J.T. & Merrit, C. (1960) Qualitative functional group analysis of gas chromatographic effluents. Anal. Chem. 32, 13781381.CrossRefGoogle Scholar
White, J.L. (1975) Protonation and hydrolysis of s-triazines by Ca-montmorillonite as influenced by substitutions at the 2-, 4- and 6-positions. Proc. Int. Clay Conf. Mexico City 391398.Google Scholar