Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-09T06:20:18.572Z Has data issue: false hasContentIssue false

Mineralogy and origin of Tertiary interbasaltic clays from the Faeroe Islands, Northeastern Atlantic

Published online by Cambridge University Press:  09 July 2018

M. Parra
Affiliation:
Institut de Géologie du Bassin d'Aquitaine, Université de Bordeaux I, 351 Cours de la Libération, 33405 Talence Cedex, France
P. Delmont
Affiliation:
Institut de Géologie du Bassin d'Aquitaine, Université de Bordeaux I, 351 Cours de la Libération, 33405 Talence Cedex, France
J. C. Dumon
Affiliation:
Institut de Géologie du Bassin d'Aquitaine, Université de Bordeaux I, 351 Cours de la Libération, 33405 Talence Cedex, France
A. Ferragne
Affiliation:
Institut de Géologie du Bassin d'Aquitaine, Université de Bordeaux I, 351 Cours de la Libération, 33405 Talence Cedex, France
J. C. Pons
Affiliation:
Institut de Géologie du Bassin d'Aquitaine, Université de Bordeaux I, 351 Cours de la Libération, 33405 Talence Cedex, France

Abstract

Mineralogical and chemical examination of Tertiary interbasaltic clays from the Faeroe Islands revealed three types of alteration of volcanic tufts and basalts: (1) Argillization of volcanic tuffs within a lacustrine environment resulted in the formation of aluminous beidellites and metahalloysites; these clays are associated with extensive coal layers at Suduroy. (2) Argillization of volcanic tuffs due to hydrothermal action resulted in the formation of thick layers of ferriferous beidellites associated with small amounts of hematite and zeolite (e.g. at Nolsoy). (3) Meteoric alteration of volcanic tufts and basalts, which took place under hot climatic conditions and contrasting seasons, led to the development of ferriferous and aluminous-ferriferous beidellites, metahalloysite, kaolinite, hematite and goethite in low (Høv profile) or high (Øravik profile) topographical positions. The three processes occurred individually or were superimposed.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bain, D.C. & Russell, J.D. (1980) Swelling minerals in a basalt and its weathering products from Morvern, Scotland: swelling chlorite. Clay Miner. 16, 203212.CrossRefGoogle Scholar
Bennets, K.P. (1965) The flint-clay deposits of the area between Pretoria and Belfast. Transvaal. Geol. Surv. Bull. 45, 79 pp.Google Scholar
Beutelspacher, H. & Van Der Marel, H.W. (1968) Atlas of Electron Microscopy of Clay Minerals and their Admixtures. Elsevier, 333 pp.Google Scholar
Biermans, V. & Baert, L. (1977) Selective extraction of the amorphous Al, Fe and Si oxides using an alkaline Tiron solution. Clay Miner. 12, 127235.Google Scholar
Biscaye, P.E. (1965) Mineralogy and sedimentation of recent deep sea clays in the Atlantic Ocean and adjacent seas and oceans. Geol. Soc. Am. Bull. 76, 803832.Google Scholar
Bockheim, J.G. & Ballard, T.W. (1970) Hydrothermal soils of the crater of Mt Baker, Washington. Soil Sci. Am. Proc. 39, 9971001.CrossRefGoogle Scholar
Bonneau, M. & Souchier, B. (1979) Constituants et Propriètés du Sol. Ed. Masson, , Paris, 459 pp.Google Scholar
Caillere, S., Henin, S. & Rautureau, M. (1982) Structure et Propriètés Physico-Chimiques des Argiles. Ed. Masson, , Paris, 184 pp.Google Scholar
Camus, G. & Kieffer, G. (1980) Les couches rouges (red partings) du Massif volcanique des Coirons (Ardèche, France). Geol. Médit. 2, 193197.Google Scholar
Chesworth, W., Dejou, J., De Kimpe, C., Macias-Vasquez, F., Cantagrel, J.M., Larroque, P., Garcia-Paz, C. & Garcia-Rodeja, E. (1983) Importance de la fersiallisation sur les basaltes miocènes du Massif Central: principales caractéristiques de cette pédogénèse. Sci. Géol., Mem. 73, 5362.Google Scholar
Delmont, P. (1985) Smectites et produits d'altération des basaltes tertiaires des lies Faeroe (Atlantique Nord-Est). Génèse, évolution et contribution à la sédimentation océanique. Thése 3e cycle, Océanologie, Bordeaux, 149 PP.Google Scholar
Desprairies, A. (1983) Relation entre le paramétre b des smectites et leur contenu en fer et en magnésium. Application à l'étude des sédiments. Clay Miner. 18, 165175.Google Scholar
Diessel, C.F.K. (1965) On the petrography of some Australian tonsteins. Pp. 149166. In: Max Richter Festschrift. Univ. Clausthal-Zellerfeld.Google Scholar
Duchaufour, Ph. (1977) Pédogénèse et Classification. Ed. Masson, , Paris, 477 pp,Google Scholar
Farmer, V.C. (1974) Layer silicates. In: The Infrared Spectra of Minerals. Mineralogical Society, London.Google Scholar
Godart, A., Paquet, H. & Millot, G. (1961) Contribution à l'étude de quelques paléosols du Nord de l'Ecosse. Bull. Serv. Carte Géol. Als. Lorr. 14, 101109.Google Scholar
Grangeon, P. (1959) Sur une couche d'altération climatique de la région des Coirons, Ardèche. C. R. Acad. Sci., Paris 248, 13701372.Google Scholar
Hamilton, J.D. (1971) Beidellitic montmorillonite from Swansea, New South Wales. Clay Miner. 9, 107123.Google Scholar
Kulbicki, G. (1957) Constitution et génèse des sédiments argileux sidérolithiques et lacustres de Nord et du Nord-Est de l'Aquitaine. Sciences de la Terre, Nancy 1-2, 101 pp.Google Scholar
Lapaquellerie, Y. (1975) Application de la spectrométrie de fluorescence X en géologie marine. Thése d'Univ., Bordeaux, 95, 98 pp.Google Scholar
Latouche, C. (1971) Les argiles des bassins alluvionnaires aquitains et des dèpendances océaniques. Contribution à l'étude d'un environnement. Thése d'Univ., Bordeaux, 344, 415 pp.Google Scholar
Loughnan, F.C. (1962) Some tonstein-like rocks from New South Wales, Australia. Neues. Jahrb. Mineral. Abhandl. 99, 2944.Google Scholar
Lövlie, R. (1975) The oxidation state of some Tertiary rocks from the Faeroe Islands and its implication for paleomagnetism. Geophys. J. R. Astr. Sci. Soc. 2, 93103.Google Scholar
Melieres, F. & Person, A. (1978) Génèse des smectites ferrifères par altération deutérique de la base des coulées volcaniques du Massif Central français. Rev. Geogr. Phys. Géol. Dyn. 20, 389398.Google Scholar
Moinereau, J. (1966) Etude des sols et des paléosols du Bas Vivarais. Thèse d'Univ., Paris, 164 pp.Google Scholar
Moinereau, J., Grillot, J.C. & Naud, G. (1972) La génèse des couches rouges du plateau des Coirons (Ardèche). C. R. Acad. Sci., Paris 274, 625627.Google Scholar
Nilsen, T.H. & Kerr, D.R. (1978) Paleoclimatic and paleogeographic implications of a lower Tertiary laterite (latosol) on the Iceland-Faeroe Ridge, North Atlantic Region. Geol. Mag. 115, 153236.Google Scholar
Paquet, H. (1970) Evolution chimique des minéraux argileux dans les altérations et les sols des climats mediterranéens et tropicaux à saisons contrastées. Mém. Serv. Carte Géol. Alsace Lorraine 30, 212 pp.Google Scholar
Parra, M., Delmont, P., Ferragne, A., Latouche, C., Pons, J.C. & Puechmaille, C. (1985) Origin and evolution of smectites in recent marine sediments of the Northeast Atlantic. Clay Miner. 20, 335346.Google Scholar
Parra, M., Puechmaille, C., Dumon, J.C., Delmont, P. & Ferragne, A. (1986) Geochemistry of Tertiary alterites clay phases on the Iceland-Faeroe Ridge (Northeast Atlantic) Leg 38, site 336. Chem. Geol. 54, 165176.CrossRefGoogle Scholar
Patterson, S.H. & Hosterman, J. W. (1962) Geology and refractory clay deposits of the Haldeman and Wrigley quadrangles, Kentucky. U.S. Geol. Surv. Bull. 1122F, 113 pp.Google Scholar
Person, A. (1976) Recherches sur les néoformations argileuses dans l'environnement volcanique. Thèse 3e cycle, Univ. Paris V.Google Scholar
Price, N.B. & Duff, P. (1969) Mineralogy and chemistry of tonstein from Carboniferous sequences in Great Britain. Sedimentology 13, 4569.Google Scholar
Rasmussen, J. & Noe-Nygaard, A. (1970) Geology of the Faeroe Islands (Pre-Quaternary). Geol. Surv. Denmark, 370 pp.Google Scholar
Richey, J.E., MacGregor, A.E. & Anderson, F.W. (1961) British Regional Geology, Scotland: The Tertiary Volcanic Districts. HMSO, London.Google Scholar
Sabine, P.A. (1971) Bentonitic beidellite-mudstone from the Faeroe Islands. Clay Miner. 9, 97106.CrossRefGoogle Scholar
Singer, A. (1966) The mineralogy of the clay fraction from the basaltic soils in Galilee, Israel. J. Soil Sci. 17, 136147.CrossRefGoogle Scholar
Singer, A. (1970) Edaphoids and paleosols of basaltic origin in Galilee, Israel. J. Soil Sci. 21, 289296.Google Scholar
Singer, A. (1978) The nature of basalt weathering in Israel. Soil Sci. 124, 217225.Google Scholar
Spears, D.A. (1970) A kaolinite mudstone (tonstein) in the British Coal Measures. J. Sedim. Petrol. 40, 386392.CrossRefGoogle Scholar
Sudo, T. & Shimoda, S. (1978) Weathering of volcanic ash and other pyroclastic materials. Pp. 105125 in: Clays and Clay Minerals of Japan (Sudo, T. and Shimoda, S., editors). Elsevier, Amsterdam & New York.Google Scholar
Talwani, M. & White, W. (1976) Introduction and exploratory notes, Leg 38. Pp. 319 in: Initial Reports ofthe Deep Sea Drilling Project, 38. U.S. Government Printing Office.Google Scholar
Tardy, Y. (1969) Géochimie des altérations. Etude des arènes et des eaux de quelques massifs cristallins d'Europe et d'Afrique. Mém. Serv. Carte Géol. Alsace Lorraine 31, 199 pp.Google Scholar
Wilson, H.E. & Manning, P.I. (1978) Geology of the Causeway coast. Mem. Geol. Surv. Northern Ireland, 172 pp.Google Scholar
Quan, Xu Ji (1983) Distribution of clay minerals in the soils of China. Soil Sci. 135, 1825.Google Scholar