Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-24T00:57:36.554Z Has data issue: false hasContentIssue false

Mineralogical, crystallographic and technological characteristics of Yaylayolu kaolin (Kütahya, Turkey)

Published online by Cambridge University Press:  09 July 2018

G. Yanik*
Affiliation:
Dumlupınar University, Department of Geological Engineering, Kütahya 43100, Turkey

Abstract

The Yaylayolu kaolin deposit is situated in the vicinity of Tavşanlı, Kütahya, western Turkey. Mineral identification and characterization studies were conducted using powder X-ray diffraction (XRD), differential thermal analyses (DTA), scanning electron microscopy with an energy dispersive X-ray spectrometer (SEM-EDX), X-ray fluorescence (XRF) and Fourier transform infrared spectroscopy (FTIR) techniques. The degree of crystallinity, Hinckley's index (HI) and the Stoch index (SI) values were determined for kaolinite from the deposit.

Five representative samples from the kaolin deposit were used for ceramic technological tests. Particle size distribution, pH value, loss on ignition, A12O3, Fe2O3 and TiO2 contents were determined, drying shrinkage, firing shrinkage, dry bend strength, fired bend strength, water absorption, pfefferkorn plasticity index, whiteness of the fired and unfired samples (L* value) and bulk density were measured. The kaolin was found to be suitable for making white cement and wall tiles, floor tiles, and tableware items which are shaped by dry pressing and extrusion.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Presented at the Euroclay 2011 Conference in Antalya, Turkey

References

Abdel-Khalek, N.A. (1999) The Egyptian kaolin: an outlook in the view of the new climate of investment. Applied Clay Science, 15, 325336.CrossRefGoogle Scholar
Al-Shameri, A.A. & Rong, L.X. (2009) Characterization and evaluation of Algaof kaolin deposits of Yemen for industrial application. American Journal of Engineering and Applied Sciences, 2, 292—296.Google Scholar
Ambikadevi, V.R. & Lalithambika, M. (2000) Effect of organic acids on ferric iron removal from ironstained kaolinite. Applied Clay Science, 16, 133145.CrossRefGoogle Scholar
Aparicio, P. & Galan, E. (1999) Mineralogical interference on kaolinite crystallinity index measurements. Clays and Clay Minerals, 47, 1227.CrossRefGoogle Scholar
Balan, E., Marco Saitta, A., Mauri, F. & Galas, G. (2001) First principles modelling of the infrared spectrum of kaolinite. American Mineralogist, 86, 13211330.CrossRefGoogle Scholar
Baş, H. (1983) Domaniç-Tavşanli-Kütahya-Gediz yörelerinin Tersiyer jeolojisi ve volkanitlerinin petrolojisi. MTA Derleme, no. 7293, 86 pp. (in Turkish).Google Scholar
Baş, H. (1986) Domaniç-Tavşanli-Kütahya-Gediz yöresinin Tersiyer jeolojisi. Jeoloji Muhendisligi, 27, 1119 (in Turkish).Google Scholar
Benco, L., Tunega, D., Hafner, J. & Lischka, H. (2001) Orientation of OH kaolinite and dickite: ab initio molecular dynamics study. American Mineralogist, 86, 10571065.CrossRefGoogle Scholar
Bundy, W.M. (1993) The diverse industrial applications of kaolin. Pp. 4373 in: Kaolin Genesis and Utilizatio. (H.H. Murray, W.M. Bundy & C.C. Harvey, editors). Special Publ. No. 1. The Clay Minerals Society.Google Scholar
Cases, J.-M., Cunin, P., Grillet, Y., Poinsignon, C. & Yvon, J. (1986) Methods of analysing morphology of kaolinites: relations between crystallographic and morphological properties. Clay Minerals, 21, 5568.CrossRefGoogle Scholar
Das, S.K. & Dana, K. (2003) Differences in densification behaviour of K- and Na-feldspar-containing porcelain bodies. Thermochimica Ada, 406, 199206.CrossRefGoogle Scholar
De Mesquita, L.M.S., Rodrigues, T. & Gomes, S.S. (1996) Bleaching of Brazilian kaolins using organic acids and fermented medium. Minerals Engineering, 9, 965-971.Google Scholar
DPT (1995) Madencilik Özel Ihtisas Komisyonu Endiistriyel Hammaddeler Alt Komisyonu, Seramikrefrakter- cam hammaddeleri qalisma grubu raporu, Cilt-1, kaolin, seramik killeri, feldspat, wollastonit, pirofilli. (in Turkish).Google Scholar
DPT (2001) Madencilik Özel Ihtisas Komisyonu Endiistriyel Hammaddeler Alt Komisyonu, Toprak sanayi hammaddeleri qah§m. grubu raporu, Cilt-1, seramik killeri, kaolen, feldispat, pirofillit, wollastonit, talk (in Turkish).Google Scholar
Ertek, N. & Öner, F. (2008) Mineralogy, geochemistry of altered tuff from Cappadocia (Central Anatolia) and its use as potential raw material for the manufacturing of white cement. Applied Clay Science, 42, 300309.CrossRefGoogle Scholar
Farmer, V.C. (1974) The layer silicates. Pp. 331-364 in: The Infrared Spectra of Mineral. (V.C. Farmer, editor). Mineralogical Society, London.CrossRefGoogle Scholar
Ferrari, S. & Gualtieri, A.F. (2006) The use of illitic clays in the production of stoneware tile ceramics. Applied Clay Science, 32, 7381.CrossRefGoogle Scholar
Fiori, C, Fabbri, B., Donati, F. & Venturi, I. (1989) Mineralogical composition of the clay bodies used in the Italian tile industry. Applied Clay Science, 4, 461473.CrossRefGoogle Scholar
Grim, R.E. (1962) Applied Clay Mineralogy. McGraw- Hill, New York.CrossRefGoogle Scholar
Groudev, S.N. (1999) Biobeneficiation of mineral raw materials. Minerals and Metallurgical Processing, 16, 1928.Google Scholar
Guggenheim, S., Bain, D.C., Bergaya, F., Brigatti, M.F., Drits, V.A., Eberl, D.D., Formoso, M.L.L., Galan, E., Merriman, R.J., Peacor, D.R., Stanjek, H. & Watanabe, T. (2002) Report of the Association Internationale pour PEtude des Argiles (AIPEA) Nomenclature Committee for 2001: Order, disorder and crystallinity in phyllosilicates and the use of the ‘Crystallinity Index'. Clay Minerals, 37, 389393.CrossRefGoogle Scholar
Guinier, A. (1956) Diffraction par les cristaux de tres petite taille. Pp. 462465 in: Theorie et Technique de la Radiocristallographi. (A. Guinier, editor). Dunod, Paris.Google Scholar
Hart, R.D., Gilkes, R.J., Siradz, S. & Singh, B. (2002) The nature of soil kaolins from Indonesia and Western Australia. Clays and Clay Minerals, 50, 198207.CrossRefGoogle Scholar
Hart, R.D., Wiriyakitnateekul, W. & Gilkes RJ. (2003) Properties of soil kaolins from Thailand. Clay Minerals, 38, 7194.CrossRefGoogle Scholar
Hemley, J.J., Hostetler, P.B., Gude AJ. & Mountjoy, W.T. (1969) Some stability relations of alunite. Economic Geology, 64, 599611.CrossRefGoogle Scholar
Hinckley, D. (1962) Variability in “crystallinity” values among the kaolin deposits of the Coastal Plain of Georgia and South Carolina. Clays and Clay Minerals, 11, 229235.CrossRefGoogle Scholar
Huertas, F.J., Fiore, S. & Linares, J. (1997) Thermal analysis as a tool for determining and defining spherical kaolinite. Clays and Clay Minerals, 45, 587590.CrossRefGoogle Scholar
Isik, V., Tekeli, O. & Seyitoğlu, G. (2004) The 40Ar/ 39Ar age of extensional ductile deformationand granitoid intrusions in the northern Menderes core complex: Implications for the initiation of extensional tectonics in western Turkey. Journal of Asian Earth Sciences, 23, 555566.CrossRefGoogle Scholar
Kara, A., Özer, F., Kayaci, K. & Özer, P. (2006) Development of a multipurpose tile body: Phase and microstructural development. Journal of the European Ceramic Society, 26, 37693782.CrossRefGoogle Scholar
Kodama, H. (1985) Infrared Spectra of Minerals. Reference Guide to Identification and Characterization of Minerals for the Study of Soil. Agriculture Canada Research Establishments, Technical Bulletin 1985-E, 198 pp.Google Scholar
Ligas, P., Uras, I., Dondi, M. & Marsigli, M., (1997) Kaolinitic materials from Romana (north-west Sardinia, Italy) and their ceramic properties. Applied Clay Science, 12, 145163.CrossRefGoogle Scholar
Mackenzie, R.C. (1970) Simple phyllosilicate based on gibbsite and brucite-like sheets. Pp.498537 in: Differential Thermal Analysis of Clay. (R.C. Mackenzie, editor), Academic Press, New York.Google Scholar
Maxwell, C.B. & Malla, P.B. (1999) Chemical delamination of kaolin. American Ceramic Society Bulletin, 78, 5759.Google Scholar
Melo, V.F., Singh, B., Schaefer, C.E.G.R., Novais, R.F. & Fontes, M.P.F. (2001) Chemical and mineralogical properties of kaolinite-rich Brazilian soils. Soil Science Society of America Journal, 65, 13241333.CrossRefGoogle Scholar
Murray, H.H. (1980) Diagnostic tests for evaluation of kaolin physical properties. Ada Mineralogica Petrographica, 24, 124.Google Scholar
Murray, H.H. (1986) Clays. Pp. 109-136 in. Ullmann's Encyclopedia of Industrial Chemistry, 5th edition, Wiley-VCH, Weinheim, Germany.Google Scholar
Murray, H.H. (2000) Traditional and new applications for kaolin, smectite, and palygorskite: a general overview. Applied Clay Science, 17, 207221.CrossRefGoogle Scholar
Murray, H.H. (2007) Applied Clay Mineralogy; Occurrences, Processing and Application of Kaolins, Bentonites, Palygorskite-Sepiolite, and Common Clays. Developments in Clay Science, 2. Elsevier, ISBN: 978-0-444-51701-2.Google Scholar
Murray, H.H. & Keller, W.D. (1993) Kaolins, kaolins and kaolins. Pp. 1 —24 in: Kaolin Genesis and Utilizatio. (H.H. Murray, W.M. Bundy & C.C. Harvey, editors). The Clay Minerals Society, Boulder, Colorado, USA.CrossRefGoogle Scholar
Newman, A.C.D. & Brown, G. (1987) The chemical constitution of clays. Pp. 1128 in: The Chemistry of Clays and Clay Mineral. (A.C.D. Newman, editor). Mineralogical Society, London.Google Scholar
Okay, A. (1981) Kuzeybati Anadolu'daki ofiyolitlerin jeolojisi ve mavisist metamorfizmasi (Tavganli- Kiitahya). Turkiye Jeoloji Kurumu Bulteni, 24, 8593 (in Turkish).Google Scholar
Özgenc, I. & İlbeyli, N. (2008) Petrogenesis of the Late Cenozoic Egrigöz pluton in western Anatolia, Turkey: implications for magma genesis and crustal processes. International Geology Review, 50, 375391.CrossRefGoogle Scholar
Phelps, G.W. (1959) A note on casting properties of English China Clay. American Ceramic Society Bulletin, 38, 411.Google Scholar
Pickering, S.M. Jr. & Murray, H.H. (1994) Kaolin. Pp. 255277 in. Industrial Minerals and Rocks, 6 th edition (D.D. Carr, editor). Society for Mining, Metallurgy and Exploration, Littleton, Colorado, USA.Google Scholar
Plancon, A., Giese, R.F. & Snyder, R. (1988) The Hinckley index for kaolinites. Clay Minerals, 23, 249260.CrossRefGoogle Scholar
Prasad, M.S., Reid, K.J. & Murray, H.H. (1991) Kaolin: Processing, properties and applications. Applied Clay Science, 6, 87119.CrossRefGoogle Scholar
Sei, J., Morato, F., Kraa, G., Staunton, S., Quiquampoix, H., Jumas, J.C. & Olivier-Fourcade, J. (2006) Mineralogical, crystallographic and morphological characteristics of natural kaolins from the Ivory Coast (West Africa). Journal of African Earth Sciences, 46, 245252.CrossRefGoogle Scholar
Singer, F. & Singer, S.S. (1979) General principles of the production of ceramics. Pp. 299302 in: Industrial Ceramics, Chapman & Hall, London.Google Scholar
Singh, B. & Gilkes RJ. (1992) Properties of soil kaolinites from south-western Australia. Journal of Soil Science, 43, 654667.CrossRefGoogle Scholar
Smykatz-Kloss, W. (1974) Differential Thermal Analysis: Application and Results in Mineralogy. Springer-Verlag, Berlin, Heidelberg, New York.CrossRefGoogle Scholar
Stoch, L. (1974. Mineraly Haste ('Clay Minerals“), 186193. Geological Publishers, Warsaw.Google Scholar
Tchoubar, B., Plancon, A., Ben Brahim, J., Clinard, C. & Sow, C. (1982) Caractæristiques structurales des kaolinites dæsordonnæes. Bulletin de Minæralogie, 105, 477491.CrossRefGoogle Scholar
TS EN 14411 (2006) Ceramic tiles - Definitions, classification, characteristics and marking. Turkish Standards Institution.Google Scholar
TS EN ISO 10545-3 (1995) Ceramic tiles - Part 3: Determination of water absorption, apparent porosity, apparent relative density and bulk density. Turkish Standards Institution.Google Scholar
Trunz, V. (1976) Influence of crystallite size on the apparent basal spacings of kaolinite. Clays and Clay Minerals, 24, 8487.CrossRefGoogle Scholar
Türkmenoğlu, A.G. & Yavuz-Işik, N. (2007) Mineralogy, chemistry and potential utilization of clays from coal deposits in the Kiitahya province, Western Turkey. Applied Clay Science, 42, 6373.CrossRefGoogle Scholar
Van der Marel, H.W. & Beutelspacher, H. (1976) Atlas of Infrared Spectroscopy of Clay Minerals and their Admixtures. Elsevier, Amsterdam, 194 pp.Google Scholar
Van Reeuwijk, L.P. (1993) Procedures for Soil Analysis. International Soil Reference and Information Centre, Wageningen, The Netherlands, Technical Paper 9, 100 pp.Google Scholar
Veglio, F., Passariello, B., Toro, L. & Marabini, A.M. (1996) Development of a bleaching process for kaolin of industrial interest by oxalic, ascorbic and sulphuric acids: preliminary study using statistical methods of experimental design. Industrial & Engineering Chemistry Research, 35, 16801687.CrossRefGoogle Scholar
Yamk, G., Esenli, F., Uz, V., Esenli, V., Uz, B. & Kiilah, T. (2010) Ceramic properties of kaolinized tuffaceous rocks in Kesan region, Thrace, NW Turkey. Applied Clay Science, 48, 499505.Google Scholar
Zanelli, C, Baldi, G., Dondi, M., Ercolani, G., Guarini, G. & Raimondo, M. (2008) Glass-ceramic frits for porcelain stoneware bodies: Effect on sintering, phase composition and technological properties. Ceramics International, 34, 455465.CrossRefGoogle Scholar