Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T01:57:25.980Z Has data issue: false hasContentIssue false

Mineralogical and geochemical characterization of archaeological ceramics from the 16th century El Badi Palace, Morocco

Published online by Cambridge University Press:  03 September 2018

Mouhssin El Halim*
Affiliation:
Laboratoire de Géosciences et Environnement (LGSE), Département de Géologie, Faculté des Sciences et Techniques, Université Cadi Ayyad, BP 549 Marrakech, Morocco UR Argile, Géochimie et Environnement sédimentaires (AGEs), Département de Géologie, Université de Liège, Quartier Agora, Bâtiment B18, Allée du six Août, 14, Sart-Tilman, B-4000, Belgium
Lahcen Daoudi
Affiliation:
Laboratoire de Géosciences et Environnement (LGSE), Département de Géologie, Faculté des Sciences et Techniques, Université Cadi Ayyad, BP 549 Marrakech, Morocco
Meriam El Ouahabi
Affiliation:
UR Argile, Géochimie et Environnement sédimentaires (AGEs), Département de Géologie, Université de Liège, Quartier Agora, Bâtiment B18, Allée du six Août, 14, Sart-Tilman, B-4000, Belgium
Valérie Rousseau
Affiliation:
Ecole Supérieure des Arts, Saint Luc de Liège (ESA), Boulevard de la Constitution, 4020 Liège, Belgium
Catherine Cools
Affiliation:
Ecole Supérieure des Arts, Saint Luc de Liège (ESA), Boulevard de la Constitution, 4020 Liège, Belgium
Nathalie Fagel
Affiliation:
UR Argile, Géochimie et Environnement sédimentaires (AGEs), Département de Géologie, Université de Liège, Quartier Agora, Bâtiment B18, Allée du six Août, 14, Sart-Tilman, B-4000, Belgium
*

Abstract

Textural, mineralogical and chemical characterization of archaeological ceramics (zellige) from El Badi Palace (Marrakech, Morocco), the main Islamic monument from the Saadian period (sixteenth century), has been performed to enhance restoration and to determine the technology of manufacturing. A multi-analytical approach based on optical and scanning electron microscopy, cathodoluminescence, X-ray fluorescence and X-ray diffraction was used. Re-firing tests on ceramic supports were also performed to determine the firing temperatures used by the Saadian artisans. A calcareous clay raw material was used to manufacture these decorative ceramics. The sherds were fired at a maximum temperature of 800°C in oxidizing atmosphere. The low firing temperature for ‘zellige’ facilitates cutting of the pieces, but also causes fragility in these materials due to the absence of vitreous phases.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Guest Associate Editor: Michele Dondi

This paper was originally presented during the session: ‘CZ-01 – Clays for ceramics’ of the International Clay Conference 2017.

References

REFERENCES

Barluenga, G., Estirado, F., Raimundo, U., Conde, J., Agua, F., Villegas, M. & García-Heras, M. (2013) Brick masonry identification in a complex historic building, the Main College of the University of Alcalá, Madrid (Spain). Construction and Building Materials, 54, 3946.Google Scholar
Bechtel, F. & Schvoerer, M. (1984) Cathodoluminescence: Application to the Study of the Texture of Ceramic Pastes, PACT 10 – Dating-Characterization of Ancient Ceramics, European Intensive Course. Council of Europe – CNRS, Paris, France.Google Scholar
Benamara, A., Schvoerer, M., Haddad, M. & Akerraz, A. (2003) Search for clues on techniques of zelliges production from the 14th century (Chellah, Morocco). Review of Archeometry, 27, 103113.Google Scholar
Bendaoud, R., Guilherme, A., Zegzouti, A., Elaatmani, M., Coroado, J., Carvalho, M.L. & Queralt, I. (2013) Elemental mapping of Moroccan enameled terracotta tile works (Zellij) based on X-ray micro-analyses. Applied Radiation and Isotopes, 82, 6066.Google Scholar
Brown, G.E. & Bailey, S.W. (1963) Chlorite polytypism: II. Crystal structure of a one-layer Cr-chlorite. American Mineralogist, 48, 4261.Google Scholar
Casas, L., Briansó, J.L., Álvarez, A., Benzzi, K. & Shaw, J. (2008) Archaeomagnetic intensity data from the Saadian Tombs (Marrakech, Morocco), late 16th century. Physics and Chemistry of the Earth, 33, 474480.Google Scholar
Chen, C.Y., Lan, C.S. & Tuan, W.H. (2000) Microstructural evolution of mullite during the sintering of kaolin powder compacts. Ceramics International, 26, 715720.Google Scholar
Cultrone, G., Rodriguez-Navarro, C., Sebastian, E., Cazalla, O. & De la Torre, M.J. (2001) Carbonate and silicate phase reactions during ceramic firing. European Journal of Mineralogy, 13, 621634.Google Scholar
Cultrone, G., Eduardo, S., Kerstin, E., Maria José, T., Olga, C. & Carlos, R.N. (2004) Influence of mineralogy and firing temperature on the porosity of bricks. Journal of the European Ceramic Society, 24, 547564.Google Scholar
De Vito, C., Medeghini, L., Mignardi, S., Orlandi, D., Nigro, L., Spagnoli, F., Lottici, P. & Bersani, D. (2014) Technological fingerprints of black-gloss ware from Motya (western Sicily, Italy). Applied Clay Science, 88–89, 202213.Google Scholar
De Vito, C., Medeghinia, L., Mignardia, S., Coletti, F. & Contino, A. (2016) Roman glazed inkwells from the ‘Nuovo Mercato di Testaccio’ (Rome, Italy): production technology. Journal of the European Ceramic Society, 37, 17791788.Google Scholar
Deverdum, G. (1957) Marrakech from the Origins to 1912, 2nd edition. North African Technical Editions, Rabat, Morocco.Google Scholar
Dondi, M., Ercolani, G., Fabbri, B. & Marsigli, M. (1999) Chemical composition of melilite formed during the firing of carbonate-rich and iron-containing ceramic bodies. Journal of the American Ceramic Society, 82, 465468.Google Scholar
Duttine, M. (2008) Laser cleaning of historical limestone buildings in Bordeaux appraisal using cathodoluminescence and electron paramagnetic resonance. Environmental Science and Pollution Research, 15, 237243.Google Scholar
Echallier, J.C. & Mery, S. (1989) Experimental Laboratory Approach of the Mineralogical and Physico-Chemical Evolution of Ceramics During Cooking. Document No. 74, 1.GAL. Linda Ellis, Paris, France.Google Scholar
El Marraki, A. (1998) Point Defects and Luminescence of Devitrification Crystals: Detection and Study in Glazes. Doctoral Thesis, Michel de Montaigne University, Bordeaux, France.Google Scholar
El Ouahabi, M., Daoudi, L., Hatert, F. & Fagel, N. (2015) Modified mineral phases during clay ceramic firing. Clays and Clay Minerals, 63, 404413.Google Scholar
Erzini, N. (1993) Zellig: a historical context. Pp. 156170 in: Zellig: The Art of Moroccan Ceramics (Hedgecoe, J. & Damluji, S.S., editors). Édition Garnet, France.Google Scholar
Fabri, B., Gualtieri, S. & Shoval, S. (2014) The presence of calcite in archeological ceramics. Journal of European Ceramic Society, 31, 18991911.Google Scholar
Gamrani, N., R'khaChaham, K., Ibnoussina, M., Fratini, F., Rovero, L., Tonietti, U., Mansori, M., Daoudi, L., Favotto, C. & Youbi, N. (2012) The particular ‘rammed earth’ of the Saadian sugar refinery of Chichaoua (XVIth century, Morocco): mineralogical, chemical and mechanical characteristics. Environmental Earth Sciences, 66, 129140.Google Scholar
Gamrani, N. (2014) Etude de Quelques Monuments Historiques Saadians (XVI–XVII Siècle) de la Ville de Marrakech (Maroc): Caractérisation et Pathologie. Doctoral thesis. University of Marrakech, Marrakech, Morocco.Google Scholar
Gliozzo, E., Lepri, B., Saguì, L. & Memmi, L. (2015) Glass ingots, raw glass chunks, glass wastes and vessels from fifth century AD Palatine Hill (Rome, Italy). Archaeological and Anthropological Science, 9, 709725.Google Scholar
Goldsmith, J.R. (1953) A ‘simplexity principle’ and its relation to ‘ease’ of crystallization. Bulletins of the Geological Society of America, 64, 439451.Google Scholar
Gradmann, R., Bertlhold, C. & Schussler, U. (2015) Composition and colouring agents of historical Islamic glazes measured with EPMA and μ-XRD. European Journal of mineralogy, 27, 325335.Google Scholar
Hatcher, H., Kaczmarczyk, A., Scherer, A. & Symonds, R.P. (1994) Chemical classification and provenance of some Roman glazed ceramics. American Journal of Archaeology, 98, 431456.Google Scholar
Hattstein, M. & Delius, P. (2000) Arts et Civilisations de l'Islam. Könemann, Cologne, Germany.Google Scholar
Hernandez, M.S., Romero, M. & Rincon, J.M. (2005) Nucleation and crystal growth of glasses producted by a generic plasma arc-process, Journal of the European Ceramic Society, 9, 110.Google Scholar
Hochuli-Gysel, A. (1977) Kleina Siatische Glasierte Reliefkeramik (50 v. Chr Bis 50 n.Chr.) Und IhreOberitalienischen Nachahmungen (Acta Bernensia). Stampfli, Bern, Switzerland.Google Scholar
İssi, A., Kara, A. & Oğuz Alp, A. (2011) An investigation of Hellenistic period pottery production technology from Harabebezikan/Turkey. Ceramics International, 37, 25752582.Google Scholar
Jordán, M., Boix, A., Sanfeliu, T. & de la Fuente, C. (1999) Firing transformations of retaceous clays used in the manufacturing of ceramic tiles. Applied Clay Science, 14, 225234.Google Scholar
Jordán, M., Sanfeliu, T. & de la Fuente, C. (2001) Firing transformations of cretaceous clays used in the manufacturing of ceramic tiles. Applied Clay Science, 20, 87.Google Scholar
Khalfaoui, A. & Hajjaji, M. (2009) A chloritic–illitic clay from Morocco: temperature–time transformation and neoformation. Applied Clay Science, 45, 8389.Google Scholar
Maggetti, M., Galetti, G., Schwander, H., Picon, M. & Wessicken, R. (1981) Campanian pottery: the nature of the black coating. Archaeometry, 23, 199207.Google Scholar
Maggetti, M. (1982) Phase analysis and its significance for technology and origin. Pp. 121133, in: Archaeological Ceramics (Olin, J.S., editor). Smithsonian Institution Press, Boston, MA, USA.Google Scholar
Maniatis, Y., Simopoulos, A., Kistikas, A. & Perdikatsis, V. (1983) Effect of reducing atmosphere on minerals and iron oxides developed in fired clays: the role of Ca. Journal of the American Ceramic Society, 66, 773781.Google Scholar
Maritan, L., Nodari, L., Mazzoli, C., Milano, A. & Russo, U. (2006) Influence of firing conditions on ceramic products: experimental study on clay rich in organic matter. Applied Clay Science, 31, 115.Google Scholar
Müller, A., Herrington, R., Armstrong, R., Reimar, S., Douglas, J.K., Nina, G.S. & Kronz, A. (2010) Trace elements and cathodoluminescence of quartz in stock work veins of Mongolian porphyry-style deposits. Mineralium Deposita, 45, 707.Google Scholar
Nagy, S., Kuzmann, E., Weiszburg, T., Gyökeres-Tóth, M. & Riedel, M. (2000) Oxide transformation during preparation of black pottery in Hungary. Journal of Radioanaytical and Nuclear Chemistry, 246, 9196.Google Scholar
Nodari, L., Marcuz, E., Maritan, L., Mazzoli, C. & Russo, U. (2007) Hematite nucleation and growth in the firing of carbonate-rich clay for pottery production. Journal of the European Ceramic Society, 27, 46654673.Google Scholar
Paccard, A. (1981) Morocco and traditional Islamic craftsmanship in architecture. Editions Workshop, 74, 1, 371381.Google Scholar
Pardo, F., Meseguer, S., Jordán, M.M., Sanfeliu, T. & González, I. (2011) Firing transformations of Chilean clays for the manufacture of ceramic tile bodies. Applied Clay Science, 51, 147150.Google Scholar
Périnet, G. & Courtois, L. (1983) Evaluation of the firing temperatures of Syria's ceramics and white Neolithic dishes. Bulletin of the Prehistoric French Society, 80, 157160.Google Scholar
Piponnier, D. (1990) Cathodoluminescence of archaeological ceramics: development of a new method for the typology of pastes, pp. 65–66. PhD thesis, Bordeaux Montaigne University, France.Google Scholar
Rathossi, C. & Pontikes, Y. (2010) Effect of firing temperature and atmosphere on ceramics made of NW Peloponnese clay sediments. Part I: reaction paths, crystalline phases, microstructure and colour. Journal of the European Ceramic Society, 30, 18411851.Google Scholar
Rhodes, D. (1978) Lands and Glazes – Enamelling Techniques. Dessain et Tolra, Paris, France.Google Scholar
Riccardi, M.P., Messiga, B. & Duminuco, P. (1999) An approach to the dynamics of clay firing. Applied Clay Science, 15, 399409.Google Scholar
Terrasse, H. (1949) The Almoravid Monuments of Marrakech. In: Acts of the XXIst International Congress of Orientalists. Asian Company, impr. National, Paris, France.Google Scholar
Tite, M., Pradell, T. & Shortland, A. (2008) Discovery, production and use of tin-based opacifiers in glasses, enamels and glazes from the late Iron Age onwards: a reassessment. Archaeometry, 50, 6784.Google Scholar
Toledo, R., dos Santos, D.R., Faria, J., Carrió, J.G., Auler, L.T. & Vargas, H. (2004) Gas release during clay firing and evolution of ceramic properties. Applied Clay Science, 27, 151157.Google Scholar
Touri, A. (1999) Maroc, les Trésors du Royaume. Dynasties Islamiques. Edition Plume, Paris, France.Google Scholar
Trindade, M.J., Dias, M.I., Coroado, J. & Rocha, F. (2009) Mineralogical transformations of calcareous rich clays with firing: a comparative study between calcite and dolomite rich clays from Algarve, Portugal. Applied Clay Science, 42, 345355.Google Scholar
Tschegg, C., Ntaflos, T. & Hein, I. (2009) Thermally triggered two-stage reaction of carbonates and clay during ceramic firing – a case study on Bronze Age Cypriot ceramics. Applied Clay Science, 43, 6978.Google Scholar
Walton, M. & Tite, M. (2010) Production technology of Roman lead-glazed pottery and its continuance into late antiquity, Archaeometry, 52, 733759.Google Scholar
Whitbread, I.K. (1986) The characterization of argillaceous inclusions in ceramic thin sections. Archaeometry, 28, 7988.Google Scholar
Whitbread, I.K. (1995) Greek Transport Amphorae. A Petrological and Archaeological Study. Fitch Laboratory Occasional Papers, 4. British School at Athens, Athens, Greece.Google Scholar