Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-24T16:26:43.852Z Has data issue: false hasContentIssue false

Mineralogical and chemical characteristics of five nontronites and Fe-rich smectites

Published online by Cambridge University Press:  09 July 2018

H. M. Köster
Affiliation:
Lehrstuhl för Angewandte Mineralogie und Geochemie, Technische Universität Mönchen, Lichtenbergstr. 4, D-85747 Garching
U. Ehrlicher
Affiliation:
Lehrstuhl för Angewandte Mineralogie und Geochemie, Technische Universität Mönchen, Lichtenbergstr. 4, D-85747 Garching
H. A. Gilg
Affiliation:
Lehrstuhl för Angewandte Mineralogie und Geochemie, Technische Universität Mönchen, Lichtenbergstr. 4, D-85747 Garching
R. Jordan
Affiliation:
Lehrstuhl för Angewandte Mineralogie und Geochemie, Technische Universität Mönchen, Lichtenbergstr. 4, D-85747 Garching
E. Murad
Affiliation:
Bayerisches Geologisches Landesamt, Aussenstelle Bamberg, Concordiastr. 28, D-96049 Bamberg, Germany
K. Onnich
Affiliation:
Lehrstuhl för Angewandte Mineralogie und Geochemie, Technische Universität Mönchen, Lichtenbergstr. 4, D-85747 Garching

Abstract

Five Fe–bearing dioctahedral smectites (three nontronites and two Fe-rich smectites) were purified using a variety of physical and chemical procedures. The structural formulae indicate one nontronite and one Fe-rich smectite to be montmorillonitic, whereas the other three smectites are beidellitic. Mössbauer spectra showed Fe to be exclusively trivalent and were fitted with three doublets, two of which had quadrupole splittings characteristic of Fe3+ in octahedral coordination, whereas the third had a distinctly lower quadrupole splitting. Although the position of the Si–O stretching band in the infrared spectra could reflect tetrahedral Fe3+, the lack of distinctive features prevented a definitive attribution of this component to tetrahedral Fe3+. The 18O/16O data suggest that fractionation of nontronite-water at ambient temperatures (1000 lnα = 23 ± 2‰) is lower than that of Fe-rich smectite (1000 lnα = 27 ± 2‰). The estimated formation temperatures of the samples are below 70°C.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahrens, W. (1938) Geologische Untersuchungen über die Basalte des Westerwaldes. . Deutsch. Geol. Ges. 90, 381383.Google Scholar
Ahrens, W. (1960) Die Lagerstätten nutzbarer Steine und Erden im Westerwald. . Deutsch. Geol. Ges. 112, 238253.Google Scholar
Allen, V.T. & Scheid, V.E. (1946) Nontronite in the Columbia River Region. Am. Miner. 31, 294312.Google Scholar
Alt, J.C., Lonsdale, P., Haymon, R.M. & Muehlenbachs, K. (1987) Hydrothermal sulfide and oxide deposits on seamounts near 21 degrees N, East Pacific Rise. Geol. Soc. Amer. Bull. 98, 157168.2.0.CO;2>CrossRefGoogle Scholar
Barrett, T.J. & Friedrichsen, H. (1982) Elemental and isotopic compositions of some metalliferous and pelagic sediments from the Galapagos mounds area, DSDP Leg 70. Chem. Geol. 36, 275298.CrossRefGoogle Scholar
Besson, G., de la Calle C, Rautureau, M., Tchoubar C, Tsipurski, S.I. & Drits, V.A. (1982) X-ray and electron diffraction study of the structure of the Garfield nontronite. Proc. Int. Clay Conf., Bologna- Pavia, 29-40.Google Scholar
Bird, M.I., Longstaffe, F.J., Fyfe, W.S., Tazaki, K. & Chivas, A.R. (1994) Oxygen-isotope fractionation in gibbsite: synthesis experiments versus natural samples. Geochim. Cosmochim. Ada, 58, 5267'—5277'.Google Scholar
Bishop, J.L., Pieters CM. & Edwards, J.O. (1994) Infrared spectroscopic analyses on the nature of water in montmorillonite. Clays Clay Miner. 42, 702716.Google Scholar
Bolter, E. (1961) Über Zersetzungsprodukte von Olivin- Feldspat-Basalten. Beitr. Miner. Petrol. 8, 111140.Google Scholar
Bonnin, D., Calas, G., Suquet, H. & Pezerat, H. (1985) Site occupancy of Fe3+ in Garfield nontronite: a spectroscopic study. Phys. Chem. Miner. 12, 5564.Google Scholar
Borthwick, J. and Harmon, R.S. (1982) A note regarding ClF3 as an alternative to BrF5 for oxygen isotope analysis. Geochim. Cosmochim. Ada, 46, 16651668.Google Scholar
Botz, R.W. & Staffers, P. (1992) Isotopic composition of hydrothermal precipitates from the Mariana Trough. Marine Geol. 108, 239243.CrossRefGoogle Scholar
Brigatti, M.F. (1983) Relationships between composition and structure in Fe—rich smectites. Clay Miner. 18, 177186.Google Scholar
Brindley, G.W. (1980) Order-disorder in clay mineral structures. Pp. 125—195 in: Crystal Structures of Clay Minerals and their X-ray Identification (Brindley, G.W. & Brown, G., editors). Mineralogical Society, London.Google Scholar
Brindley, G.W. & MacEwan, D.M.C. (1953) Structural aspects of the mineralogy of clays. Pp. 57—69 in: Ceramics — A Symposium. The British Ceramic Society, Stoke-on-Trent.Google Scholar
Byström-Brusewitz, A.M. (1975) Studies on the Li test to distinguish between beidellite and montmorillonite. Proc. Int. Clay Conf, Mexico, 419-428.Google Scholar
Cardile, G.M. & Johnston, J.H. (1985) Structural studies of nontronites with different iron contents by 57Fe Mossbauer spectroscopy. Clays Clay Miner. 33, 295300.Google Scholar
Clayton, R.N. & Mayeda, T.D. (1963) The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for analysis. Geochim. Cosmochim. Ada, 27, 4352.Google Scholar
Cole, T.G. (1983) Oxygen isotope geothermometry and origin of smectites in the Atlantis II Deep, Red Sea. Earth Planet. Sci. Lett. 66, 166176.Google Scholar
Cole, T.G. (1985) Composition, oxygen isotope geochemistry, and origin of smectite in the metalliferous sediments of the Bauer Deep, Southeast Pacific. Geochim. Cosmochim. Ada, 49, 221235.Google Scholar
Correns, C.W. & Piller, H. (1955) Mikroskopie der feinkornigen Silikate. Pp. 699-780 in: Handbuch der Mikroskopie in der Technik, Band IV, Teil 1 “Gesteine” (Freund, H., editor). Umschau Verlag, Frankfurt/Main.Google Scholar
De Carlo, E.H., McMurtry, G.M. & Yeh, H.W. (1983) Geochemistry of hydrothermal deposits from Loihi submarine volcano, Hawaii. Earth Planet. Sci. Lett. 66, 438449.Google Scholar
Decarreau, A., Badaut, D. & Blanc, G. (1990) Origin and temperature formation of Fe rich clays from Atlantis II Deep deposits (Red Sea); an oxygen isotopic geochemistry approach. Chem. Geol. 84, 363364.Google Scholar
Eggleton, R.A. (1977) Nontronite: chemistry and X-ray diffraction. Clay Miner. 12, 181194.Google Scholar
Embey-Isztin, A., Downes, H., James, D.E., Upton, B.G.J., Dobosi, G., Ingram, G.A., Harmon, R.S. & Scharbert, H.G. (1993) The petrogenesis of Pliocene alkaline volcanic rocks from the Pannonian basin, Eastern Central Europe. J. Petrol. 34, 317343.Google Scholar
Farmer, V.C. (1974) The Infrared Spectra of Minerals. Mineralogical Society, London.Google Scholar
Foster, M.D. (1951) The importance of exchangeable magnesium and cation exchange capacity in the study of montmorillonite clays. Am. Miner. 36, 9941006.Google Scholar
Gilg, H.A. (1999) D-H evidence for the timing of kaolinization in northeast Bavaria, Germany. Chem. Geol. (in press).Google Scholar
Goodman, B.A., Russell, J.D., Fraser, A.R. & Woodhams, F.W.D. (1976) A Mossbauer and I.R. spectroscopic study of the structure of nontronite. Clays Clay Miner. 24, 5359.Google Scholar
Grauby, O., Petit, S., Decarreau, A. & Baronnet, A. (1994) The nontronite-saponite series: an experimental approach. Eur. J. Miner. 6, 99112.Google Scholar
Greene-Kelly, R. (1953) Irreversible dehydration in montmorillonite. Part II. Clay Miner. Bull. 2, 5256.Google Scholar
Grim, R.E. & Giiven, N. (1978) Bentonites. Developments in Sedimentology, 24. Elsevier, Amsterdam.Google Scholar
Giiven, N. (1988) Smectites. Pp. 497-559 in: Hydrous Phyllosilicates. Reviews in Mineralogy, 19. Mineralogical Society of America, Washington D.C.Google Scholar
Hashimoto, J. & Jackson, M.L. (1960) Rapid dissolution of allophane and kaolinite-halloysite after dehydration. Clays Clay Miner. 7, 102113.CrossRefGoogle Scholar
Hearn, P.P. Jr., Steinkampf, W.C., Horton, D.G., Solomon, G.C., White, L.D. & Evans, J.R. (1989) Oxygenisotope composition of ground water and secondary minerals in Columbia Plateau basalts; implications for the paleohydrology of the Pasco Basin. Geology, 17, 606610.Google Scholar
Hein, J.R., Yeh, H.W. & Alexander, E. (1979) Origin of iron-rich montmorillonite from the manganese nodule belt of the North Equatorial Pacific. Clays Clay Miner. 11, 185-194.Google Scholar
Hofmann, U. & Klemen, R. (1950) Verlust der Austauschfahigkeit von Lithiumionen an Bentonit durch Erhitzung. Z. Anorg. Chem. 262, 9599.Google Scholar
Hogg, A.J.C., Pearson, M.J., & Fallick, A.E. (1993) Pretreatment of Fithian illite for oxygen isotope analysis. Clay Miner. 28, 149152.CrossRefGoogle Scholar
Hosterman, J.W. (1969) Clay deposits of Spokane County, Washington. Bull. U.S. Geol. Surv. 1270, 196.Google Scholar
Johnston, J.H. & Cardile CM. (1985) Iron sites in nontronite and the effect of interlayer cations from Mössbauer spectra. Clays Clay Miner. 33, 2130.CrossRefGoogle Scholar
Kerr, P.F. & Kulp, J.L. (1949) Reference clay localities - United States. Pp. 69-73 in: Preliminary Report No. 2, A.P.I. Project 49, Clay Mineral Standards. Google Scholar
Kerr, P.F., Hamilton, P.K., Pill, R.J., Wheeler, G.V., Lewis, D.R., Burkhardt, W., Reno, D., Taylor, G.L., Mielenz, R.C., King, M.E. & Schieltz, N.C. (1950) Analytical data on reference clay materials. Preliminary Report No. 7, A.P.I. Project 49, Clay Mineral Standards. S. Nontronite, Manito, Washington, Sample No. 33 B. Google Scholar
Kerschreiter, H. (1975) Mineralogische und kristallchemische Untersuchungen am Nontronit von Hundsangen (Westerwald) und den Montmorilloniten von Gopfersgrun und Groschlattengrun (Nordostbayern). Unpubl. Diploma thesis, Techn. Univ. Miinchen, Germany.Google Scholar
Köster, H.M. (1960) Nontronit und Picotit aus dem Basalt des Ölberges bei Hundsangen, Westerwald. Beitr. Miner. Petrog. 7, 7175.Google Scholar
Köster, H.M. (1977) Die Berechnung kristallchemischer Strukturformeln von 2:1-Schichtsilikaten unter Beriicksichtigung der gemessenen Zwischenschichtladung und der Kationenumtauschkapazitaten sowie die Darstellung der Ladungsverteilung in der Struktur mittels Dreieckskoordinaten. Clay Miner. 12, 4554.Google Scholar
Köster, H.M. (1979) Die chemische Silikatanalyse. Spektralphotometrische, komplexometrische und flammenspektrometrische Analysenmethoden, pp. 1 — 196. Springer-Verlag, Berlin.Google Scholar
Köster, H.M. (1982) The crystal structure of 2:1 layer silicates. Proc. Int. Clay Conf., Bologna-Pavia, 41-71.Google Scholar
Köster, H.M. (1995) Die rontgenographische Identifizierung der silikatischen Tonminerale und beigemengter Akzessorien in Texturpraparaten. Z. geol. Wiss. 23, 287300.Google Scholar
Köster, H.M., Kohler, E.E., Krahl L, Kroger, J. & Vogt, K. (1973) Veranderungen am Montmorillonit durch Einwirkung von 0,1 m AeDTE-Losung, 1 n NaCl- Losung und 0,1 n Salzsaure. Neues. Jahrb. Miner. Abh. 119, 83100.Google Scholar
Lawrence, J.R. & Taylor, H.P. Jr. (1972) Hydrogen and oxygen isotope systematics in weathering profiles. Geochim. Cosmochim. Ada, 36, 13771393.Google Scholar
Lawrence, J.R. & Rashkes Meaux, J. (1993) The stable isotopic composition of ancient kaolinites of North America. Pp. 249—261 in: Climate Change in Continental Isotopic Records. (Swart, P.K., Lohmann, K.C., McKenzie, J. & Savin, S., editors). Geophysical Monograph 78, Amer. Geophys. Union, Washington D.C.Google Scholar
Lear, P.H., Komadel, P. & Stucki, J.W. (1988) Mossbauer spectroscopic identification of iron oxides in nontronite from Hohen Hagen, Federal Republic of Germany. Clays Clay Miner. 36, 376378.Google Scholar
Luca, V. (1991) Detection of tetrahedral Fe3+ sites in notronite and vermiculite by Mössbauer spectroscopy. Clays Clay Miner. 39, 467477.Google Scholar
McMurtry, G.M. & Yeh, H.W. (1981) Hydrothermal clay mineral formation of East Pacific Rise and Bauer Basin sediments. Chem. Geol. 32, 189205.Google Scholar
McMurtry, G.M., Wang, C.H. & Yeh, H.W. (1983) Chemical and isotopic investigations into the origin of clay minerals from the Galapagos hydrothermal mounds field. Geochim. Cosmochim. Ada, 47, 475489.Google Scholar
McMurtry, G.M., Sedwick, P.N., Fryer, P., Von der Haar, D.L. & Yeh, H.W. (1993) Unusual geochemistry of hydrothermal vents on submarine arc volcanoes; Kasuga Seamounts, northern Mariana Arc. Earth Planet. Sci. Lett. 114, 517528.Google Scholar
Mehra, O.F. & Jackson MX. (1960) Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clays Clay Miner. 7, 317327.Google Scholar
Millot, G. (1970) Geology of Clays, pp. 142-154. Springer-Verlag, Berlin.Google Scholar
Murad, E. (1987) Mössbauer spectra of nontronites: structural implications and characterization of associated iron oxides. Z Pflanzenernähr. Bodenk. 150, 279285.Google Scholar
Murnane, R. & Clague, D.A. (1983) Nontronite from a low-temperature hydrothermal system on the Juan de Fuca Ridge. Earth Planet. Sci. Lett. 65, 343352.Google Scholar
Pruett, R.J. & Murray, H.H. (1993) The mineralogical and geochemical controls that source rocks impose on sedimentary kaolins. Pp. 149 — 170 in: Kaolin Genesis and Utilization (Murray, H.H., Bundy, W. & Harvey, C., editors). The Clay Minerals Society Spec. Pub. No.l.Google Scholar
Radoslovich, E.W. (1962) The cell dimensions and symmetry of layer lattice silicates. II-Regression relations. Am. Miner. 47, 617636.Google Scholar
Rancourt, D.G., Dang, M.-Z. & Lalonde, A.E. (1992) Mössbauer spectroscopy of tetrahedral Fe3+ in trioctahedral micas. Am. Miner. 77, 3443.Google Scholar
Richter, W. (1987) Deuterium and oxygen-18 in Central European groundwaters. Pp. 553—572 in: Isotopes in Nature (Wand, U. & Strauch, G., editors) Acad. Sci. GDR, Leipzig, Germany.Google Scholar
Ross, C.S. & Hendricks, S.B. (1945) Minerals of the montmorillonite group. U.S. Geol. Surv. Prof. Paper 205-B, 1-79.Google Scholar
Rozenson, I. & Heller-Kallai, L. (1977) Mossbauer spectra of dioctahedral smectites. Clays Clay Miner. 25, 94101.Google Scholar
Russell, J.D. & Clark, D.R. (1978) The effect of the Fefor- Si substitution on the b-dimension of nontronites. Clay Miner. 13, 133137.Google Scholar
Russell, J.D. & Fraser, A.R. (1994) Infrared Methods. Pp. 11—67 in: Clay Mineralogy: Spectroscopic and Chemical Determinative Methods (Wilson, M.J., editor). Chapman & Hall, London.Google Scholar
Russell, J.D., Farmer, V.C. & Velde, B. (1970) Replacement of OH by OD in layer silicates, and identification of the vibrations of these groups in infrared spectra. Mineral. Mag. 37, 869879.Google Scholar
Russell, J.D., Goodman, B.A. & Fraser, A.R. (1979) Infrared and Mössbauer studies of reduced nontronites. Clays Clay Miner. 27, 6371.Google Scholar
Savin, S.M. & Lee, M. (1988) Isotopic studies of phyllosilicates. Reviews in Mineralogy, 19, 189223. Mineralogical Society of America, Washington D.C.Google Scholar
Schneiderhöhn, P. (1965) Nontronit vom Hohen Hagen und Chloropal vom Meenser Steinberg bei Göttingen. Tschermaks Miner. Petrog. Mitt. 10, 385399.Google Scholar
Schöps, D., Herzig, P.M., Halbach, P., Friedrich, G. & Blum, N. (1993) Mineralogy, chemistry and oxygen isotope thermometry of nontronitic smectites from Central Pacific seamounts. Chem. Geol. 106, 331343.Google Scholar
Schroll, E., Tauber, A.F. & Wieden, P. (1965) Exkursion A/ll. Nördliches und mittleres Burgenland. Fortschr. Miner. 42, 119131.Google Scholar
Schwaighofer, B. & Müller, H.W. (1979) Zur Tonmineralgenese der Verwitterungsbildungen in den Vulkaniten und im Kristallin von Oberpullendorf (Burgenland, Österreich). Verh. Geol. B.-A. (Vienna), 3, 377392.Google Scholar
Sheppard, S.M.F. & Gilg, H.A. (1996) Stable isotope geochemistry of clay minerals. Clay Miner. 31, 124.Google Scholar
Sherman, D.G. & Vergo, N. (1988) Optical (diffuse reflectance) and Mossbauer spectroscopy study of nontronite and related Fe-bearing smectites. Am. Miner. 73, 13461354.Google Scholar
Simon-Coinçon, R., Thiry, M., & Schmitt, J.-M. (1996) Variety and relationships of weathering features along the early Tertiary palaeosurface in the southwestern French Massif Central and nearby Aquitaine Basin. Paleogeogr. Paleoclimatol. Paleoecol. 129, 5179.Google Scholar
Singer, A., Staffers, P., Heller-Kallai, L. & Szafranek, D. (1984) Nontronite in a deep-sea core from the South Pacific. Clays Clay Miner. 32, 375383.Google Scholar
Stakes, D.S. & O'Neil, J.R. (1982) Mineralogy and stable isotope geochemistry of hydrothermally altered oceanic rocks. Earth Planet. Sci. Lett. 57, 285304.Google Scholar
Staffers, P., Singer, A., McMurtry, G.M., Arquit, A. & Yeh, H.W. (1990) Geochemistry of a hydrothermal nontronite deposit from the Lau Basin, Southwest. Geol. Jahrb. D 92, 615628.Google Scholar
Stubican, V. & Roy, R. (1961) A new approach to the assignment of i.r. absorption bands in layer silicates. Z. Krist. 115, 200214.Google Scholar
Vali, H. & Köster, H.M. (1986) Expanding behaviour, structural disorder, regular and random irregular interstratification of 2:1 layer-silicates studied by high-resolution images of transmission electron microscopy. Clay Miner. 21, 827859.Google Scholar
Vortisch, W. & Butz-Braun, R. (1992) A Tertiary weathering profile in volcanic tuffs of the Westerwald. Neues. Jahrb. Geol. Paläont. Mh. 11, 701708.Google Scholar
Vogt, K. & Köster, H.M. (1977) Zur Mineralogie, Kristallchemie und Geochemie einiger Montmorillonite aus Bentoniten. Clay Miner. 13, 2543.Google Scholar
Yapp, C.J. (1990) Oxygen isotopes in iron (III) oxides 1. Mineral-water fractionation factors. Chem. Geol. 85 329-335.Google Scholar
Yeh, H.W. & Savin, S.M. (1977) Mechanism of burial metamorphism of argillaceous sediments: 3. Oisotope evidence. Geol. Soc. Amer. Bull. 88, 13211330.Google Scholar