Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-26T03:05:47.872Z Has data issue: false hasContentIssue false

Microstructures and interlayering in pyrophyllite from the Coastal Range of central Chile: evidence of a disequilibrium assemblage

Published online by Cambridge University Press:  09 July 2018

M. D. Ruiz Cruz*
Affiliation:
Departamento de Química Inorgánica, Cristalografía y Mineralogía, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
D. Morata
Affiliation:
Departamento de Geología, Universidad de Chile, Plaza Ercilla, 803, Santiago, Chile
E. Puga
Affiliation:
Instituto Andaluz de Ciencias de la Tierra (C.S.I.C.-U.G.R.), Avda. Fuentenueva s/n, 18002 Granada, Spain
L. Aguirre
Affiliation:
Departamento de Geología, Universidad de Chile, Plaza Ercilla, 803, Santiago, Chile
M. Vergara
Affiliation:
Departamento de Geología, Universidad de Chile, Plaza Ercilla, 803, Santiago, Chile
*

Abstract

Pyrophyllite from a Triassic sedimentary formation from the Coastal Range of Chile has been investigated by transmission/analytical electron microscopy (TEM/AEM). The mineral assemblage includes pyrophyllite, muscovite, paragonite, a kaolin mineral, boehmite, rutile and hematite. The textures indicate that the protolith was a volcanoclastic rock. Petrographic evidence, chemistry, and the mineral assemblage suggest the intense leaching of the parent rock by a weathering process, before the metamorphic episode, to create the protolith for the pyrophyllite. Pyrophyllite always grows from the kaolin mineral, and both phases show close orientation relationships. The presence of parallel intergrowths of pyrophyllite and muscovite indicate that muscovite also grew from the kaolin mineral. Nevertheless, the composition of muscovite suggests that this phase must also form from another precursor, probably Al smectite. The AEM data and textural relationships between pyrophyllite and muscovite reveal the presence of two generations of muscovite and suggest that Na-rich muscovite recrystallized into a Na-free muscovite and paragonite.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguirre, L. (1985) The Southern Andes. Pp. 265-376 in: The Ocean Basins and Margins, v. 7A, The Pacific Ocean (Nairn, A.E.M., Stehli, F.G. & Uyeda, S., editors). Plenum Press, New York.Google Scholar
Bailey, S.W. (1984) Structures of layer silicates. Pp. 1—124 in: Crystal Structures of Clay Minerals and their X-ray Identification (Brindley, G.W. & Brown, G., editors.) Monograph 5, Mineralogical Society, London.Google Scholar
Bowers, T.S., Jackson, K.J. & Helgeson, H.C. (1984) Equilibrium Activity Diagrams for Coexisting Minerals and Aqueous Solutions at Pressures and Temperatures to 5 kb and 600°C Springer-Verlag, New York, 397 pp.Google Scholar
Chamley, H. (1989a) Clay formation through weathering. Pp. 3—20 in: Clay Sedimentology (Chamley, H., editor). Springer-Verlag, Berlin. Chamley, H. (1989b) Depth of burial. Pp. 359-389 in: Clay Sedimentology (Chamley, H., editor) Springer-Verlag, Berlin.CrossRefGoogle Scholar
Charrier, R. (1979) El Triasico en Chile y regiones adyacentes de Argentina: una reconstructión paleogeografica y paleoclimática. Comunicaciones, 26, 137.Google Scholar
Day, H.W. (1976) A working model of some equilibria in the system alumina-silica-water. American Journal of Science, 276, 12541284.CrossRefGoogle Scholar
Deer, W.A., Howie, R.A. & Zussman, J. (1975a) Hydroxides. Pp. 89—127 in: Rock Forming Minerals, Vol. 5: Non-silicates. Longman, London.Google Scholar
Deer, W.A., Howie, R.A. & Zussman, J. (1975b) Montmorillonite group. Pp. 226—245 in: Rock Forming Minerals, Vol. 3: Sheet silicates. Longman, London.Google Scholar
Ehrenberg, S.N. & Nadeau, P.H. (1989) Formation of diagenetic illite in sandstones of the Gran Formation, Haltenbauken area, mid-Norwegian continental shelf. Clay Minerals, 24, 233–253.CrossRefGoogle Scholar
Ehrenberg, S.N., Aagaard, P., Wilson, M.J., Fraser, A.R. & Duthie, D.M.L. (1993) Depth-dependent transformation of kaolinite to dickite in sandstones of the Norwegian continental shelf. Clay Minerals, 28, 325–352.CrossRefGoogle Scholar
Evans, B.W. & Guggenheim, S. (1991) Talc, pyrophyllite, and related minerals. Pp. 225—294 in: Hydrous Phyllosilicates (Exclusive of Micas) (Bailey, S.W., editor). Reviews in Mineralogy, 19, Mineralogical Society of America, Washington, D.C.Google Scholar
Feenstra, A. (1985) Metamorphism of bauxites on Naxos, Greece. Geologica Unltraiectina, 39, 1–206.Google Scholar
Frey, M. (1978) Progressive low-grade metamorphism of a black shale formation, Central Swiss Alps, with special reference to pyrophyllite and margarite bearing assemblages. Journal of Petrology, 19, 95–135.Google Scholar
Frey, M. (1987) Very low-grade metamorphism of clastic sedimentary rocks. Pp. 9—58 in: Low-temperature Metamorphism (Frey, M., editor). Blackie, Glasgow.Google Scholar
Haas, H. & Holdaway MJ. (1973) Equilibria in the system A12O3—SiO2—H2O involving the stability limits of pyrophyllite, and thermodynamic data of pyrophyllite. American Journal of Science, 273, 449464.CrossRefGoogle Scholar
Jansen, J.B.H. & Schuiling, R.D. (1976) Metamorphism on Naxos: Petrology and geothermal gradient. American Journal of Science, lid, 1225—1253.Google Scholar
Jiang, W.T.-, Essene EJ. & Peacor, D.R. (1990) Transmission electron microscopic study of coexisting pyrophyllite and muscovite: Direct evidence for the metastability of illite. Clays and Clay Minerals, 38, 225–240.CrossRefGoogle Scholar
Jiang, W.T.- & Peacor, D.R. (1993) Formation and modification of metastable intermediate sodium potassium mica, paragonite and muscovite in hydrothermally altered metabasites from northern Wales. American Mineralogist, 78, 782–793.Google Scholar
Kodama, H. (1958) Mineralogical study on some pyrophyllites in Japan. Mineralogical Journal, 2, 236-244.Google Scholar
Kretz, R. (1983) Symbols for rock-forming minerals. American Mineralogist, 68, 277–279.Google Scholar
Levi, B., Aguirre, L., Padilla, H. & Vergara, M. (1989) Low-grade regional metamorphism in the Mesozoic-Cenozoic volcanic sequences of the Central Andes. Journal of Metamorphic Geology, 7, 487–495.Google Scholar
Li, G., Peacor, D.R., Merriman, R.J. & Roberts, B. (1994) The diagenetic to low-grade metamorphic evolution of matrix white micas in the system muscoviteparagonite in a mudrock from central Wales, United Kingdom. Clays and Clay Minerals, 42, 369–381.CrossRefGoogle Scholar
Lorimer, G.W. & Cliff, G. (1976) Analytical electron microscopy of minerals. Pp. 506—519 in: Electron Microscopy in Mineralogy (Wenk, H.R., editor). Springer-Verlag, New York.Google Scholar
Merriman, R.J. & Peacor, D.R. (1999) Very low-grade metapelites: Mineralogy, micro fabrics and measuring reactions progress. Pp. 10—60 in: Low-grade Metamorphism (Frey, M. & Robinson, D., editors). Blackwell Science, Oxford.Google Scholar
Montoya, J.W. & Hemley, J.J. (1975) Activity relations and stabilities in alkali feldspar and mica alteration reactions. Economic Geology, 70, 577–583.Google Scholar
Norrish, K. & Hutton, J.T. (1969) An accurate X-ray spectrographic method for the analysis of a wide range of geological materials. Geochimica et Cosmochimica Ada, 33, 431–453.CrossRefGoogle Scholar
Oyarzún, M., Aguirre, L. & Morata, D. (1997) Quimismo bimodal y metamorfismo de bajo grado en las rocas volcanicás triasicas de la Cordillera de la Costa de Chile central. 8° Congreso Geológico Chileno, Antofagasta, Adas, vol. 2, 1424-1428.Google Scholar
Page, R.H. (1980) Partial interlayers in phyllosilicates studied by TEM. Contributions to Mineralogy and Petrology, 75, 309–314.Google Scholar
Pedro, G. (1981) Les grands traits de l'évolution cristallochimique des minéraux au cour de l'altération superficielle des roches. Rendiconti della Società Italiana di Mineralogia e Petrologia, 37, 633666.Google Scholar
Robert, P. (1971) Sur un gisement de bauxite de l'île d'Eube (Grece). Comptes Rendus de l'Academie de Sciences de Paris, 272-26, 32283230.Google Scholar
Reynolds, R.C. (1991) Mixed-layer chlorite minerals. Pp. 601—674 in: Hydrous Phyllosilicates (Exclusive of Micas) (Bailey, S.W., editor). Reviews in Mineralogy, 19, Mineralogical Society of America, Washington, D.C.Google Scholar
Rivano, S., Sepúlveda, R., Boric, R. & Espiñeira, D. (1993) Mapa geológico de las Hojas Quillota y Portillo. Servicio Nacional de Geologia y Minería. Mapas Geológicos, N°73, escala 1:250.000, Santiago.Google Scholar
Robinson, D., Bevins, R.E., Aguirre, L. & Vergara, M. (2004) A reappraisal of episodic burial metamorphism in the Andes of central Chile. Contributions to Mineralogy and Petrology, 146, 513–528.CrossRefGoogle Scholar
Ruiz Cruz, M.D. & Reyes, E. (1998) Kaolinite and dickite formation during shale diagenesis: isotopic data. Applied Geochemistry, 13, 95104.Google Scholar
Ruiz Cruz, M.D., Puga, E., Aguirre, L., Vergara, M. & Morata, D. (2002) Vermiculite-like minerals in lowgrade metasediments from the Coastal Range of central Chile. Clay Minerals, 37, 221234.CrossRefGoogle Scholar
Schultz, L.G. (1964) Quantitative interpretation of mineralogical data for Pierre Shale. US Geological Survey Professional Paper, 391—C, 31 pp.Google Scholar
Sharma, R.P. (1979) Origin of the pyrophyllite-diaspore deposits of the Bundelkhand Complex, central India. Mineral Deposita, 14, 343–352.Google Scholar
Shau, Y.H., Feather, M.E., Essene EJ. & Peacor, D.R. (1991) Genesis and solvus relations of submicroscopically intergrown paragonite and phengite in blueschists from northern California. Contributions to Mineralogy and Petrology, 106, 367–378.Google Scholar
Thomas, H. (1958) Geología de la Cordillera de la Costa entre el valle de La Ligua y la Cuesta de Barriga. Instituto de Investigaciones Geológicas, 2, 86 p.Google Scholar
Vergara, M., Levi, B., Nystrom, J.O. & Cancino, A. (1995) Jurassic and Early Cretaceous island arc volcanism, extension, and subsidence in the Coast Range of central Chile. Geological Society of America Bulletin, 107, 14271440.Google Scholar
Zen, E. (1961) Mineralogy and petrology of the system A12O3—SiO2—H2O in some pyrophyllite deposits of North Carolina. American Mineralogist, 46, 52–66.Google Scholar