Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-23T16:32:23.009Z Has data issue: false hasContentIssue false

Mica weathering in acidic soils by analytical electron microscopy

Published online by Cambridge University Press:  09 July 2018

H. Aoudjit
Affiliation:
Unité de Science du Sol, INRA, Route de Saint-Cyr, 78026 Versailles Cedex, France
F. Elsass
Affiliation:
Unité de Science du Sol, INRA, Route de Saint-Cyr, 78026 Versailles Cedex, France
D. Righi
Affiliation:
URA 721, CNRS, “Argiles, Sols et Altérations”, Faculté des Sciences, 86022 Poitiers Cedex, France
M. Robert
Affiliation:
Unité de Science du Sol, INRA, Route de Saint-Cyr, 78026 Versailles Cedex, France

Abstract

The mineralogy, crystallochemistry and microfabric of clay minerals from acidic soils were studied using transmission electron microscopy (TEM) and analytical electron microscopy (AEM). Soil profiles, developed on saprolites, sampled in the main crystalline massifs of France represent different pedological environments. The study focused on the microsystem of mica weathering, which appeared to be the main source of secondary clay minerals, and involves microdivision, transformation and dissolution. Microdivision begins with the splitting of large particles along layer planes and their shearing normal to the layers. This induces the breakdown of particles of one hundred layers into particles having only a few layers. The transformation of micas follows two steps: they first transform into 1–1.4 nm mixed-layer minerals and then into hydroxy-Al interlayered vermiculite. The formation of hydroxy-Al interlayered vermiculite derived from micas is dominant in acidic soils; particles are generally small, consisting of only three to seven layers, and always have a dioctahedral composition, whatever the type of the original mica (trioctahedral or dioctahedral). Dissolution affects the surface layers or large domains of the core of the particles and leads to the formation of multi-elementary gels rich in Fe and Al.

Resume

Resume

La minéralogie, la cristallochimie et la microorganisation de minéraux argileux de sols acides ont été étudiées par microscopie électronique à transmission (TEM) et microanalyse X (AEM). Des profils de sols ont été prélevés dans les principaux massifs cristallins de France. Ces sols développés sur arènes repréntent divers environnements pédologiques. L'étude est focalisée sur le microsystème d'altération des micas qui apparaissent être la principale source de minéraux argileux secondaires. L'altération des micas se fait par microdivision, transformation et dissolution. La microdivision commence par le délitement des grandes particules suivant le plan des feuillets et leur cisaillement perpendiculairement aux feuillets. Ceci entraine l'effritement des particules ayant une centaine de feuillets en particules plus petites n'ayant que quelques feuillets. La transformation des micas comprend deux étapes: la première est représentée par des minéraux interstratifiés 1–1.4 nm, la deuxième par la vermiculite hydroxyalumineuse. La transformation en vermiculite hydroxyalumineuse est un phénomène majeur dans les sols acides; les particules sont en général de petite taille (3–7 feuillets), et ont toujours une composition dioctaédrique, quelque soit le mica d'origine (trioctaédrique ou dioctaédrique). La dissolution affecte les feuillets de surface ou bien des domaines étendus au coeur des particules. Elle entraine la formation de gels multi-élémentaires riches en Fe et Al.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahn, J.H. & Peacor, D.R. (1986) Transmission electron microscope data for rectorite: Implications for the origin and structure of “fundamental particles”. Clays Clay Miner. 34, 180186.Google Scholar
Amouric, M. (1987) Growth and deformation defects in phyllosilicates as seen by HRTEM. Acta Cryst. B43, 57-63.Google Scholar
Amouric, M. & Parron, C. (1985) Stucture and growth mechanism of glauconite as seen by high resolution transmission electron microscopy. Clays Clay Miner. 33, 473482.CrossRefGoogle Scholar
Aoudjit, H. (1993) Genèse, Cristallochimie, Organisation et Propriétés physico-chimiques des argiles des sols et des arènes développés sur roches cristallines (France). Apport de la microscopie électronique analytique. Thèse de Doctorat de l'Université Paris VI, Paris.Google Scholar
Aoudjit, H., Robert, M. & Elsass, F. (1995a) Genesis, organisation and properties of clays formed in saprolites and soils on granites. Proc. 10th Int. Clay Conf., Adelaide, 367-372.Google Scholar
Aoudjit, H., Robert, M., Elsass, F. & Curmi, P. (1995b) Detailed study of smectite genesis in granitic saprolites by analytical electron microscopy. Clay Miner. 30, 143154.Google Scholar
Aurousseau, P., Curmi, P., Bouille, S. & Charpentier, S. (1983) Les vermiculites hydroxy-alumineuses du massif Armoricain (France). Approches minéralogique, microanalytique et thermodynamique. Geoderma, 31, 1740.Google Scholar
Banfield, J.F. & Eggleton, R.A. (1988) Transmission electron microscope study of biotite weathering. Clays Clay Miner. 36, 4760.Google Scholar
Buseck, P.R. & Iijima, S. (1974) High resolution electron microscopy of silicates. Am. Miner. 59, 1–21.Google Scholar
Cabidoche, Y.M. (1979) Cantribution a l'etude des sob de Haute-Montagne. Analyse des relations solsmilieu dans les Pyrénées Occidentales cristallines et calcaires. Thèse Doc. 3ème Cycle, Univ. des Sci. et Techniques du Languedoc, France.Google Scholar
Deer, W.A., Howie, R.A. & Zussman, J. (1963) Rock Forming Minerals. vol 3: Sheet Silicates. Longmans, Green & Co Ltd, London.Google Scholar
Harrassovitz, H. (1926) Laterit. Fortschr. Geol. Paleontol., Berlin, 4, 253265.Google Scholar
Jackson, M.L. (1963) Interlayering of expansible layer silicates in soils by chemical weathering. Clays Clay Miner. 11, 2946.Google Scholar
Kodama, H. (1979) Clay minerals in Canadian soils: their origin, distribution and alteration. Can. J. Soil Sci. 59, 3758.CrossRefGoogle Scholar
Lelong, F. & Souchier, B. (1970) Bilans d'altération dans la séquence de sols Vosgiens, sols bruns acides a podzols, sur granite. Bull. Serv. Carte géol. Alsace Lorraine, 23, 34, 113-143.Google Scholar
Livi, K.J.T. & Veblen, D.R. (1987) “Eastonite” from Easton, Pennsylvania: A mixture of phlogopite and a new form of serpentine. Am. Miner. 72, 113–125.Google Scholar
Righi, D. & Meunier, A. (1991) Characterization and genetic interpretation of clays in acid brown soil (Dystrochrept) developed in a granitic saprolite. Clays Clay Miner. 39, 5, 519530.Google Scholar
Righi, D., Girault, P. & Meunier, A. (1986) Transformations des phyllosilicates dans un sol cryptopodzolique humifère du plateau de Millevaches, France. Clay Miner. 21, 4354.CrossRefGoogle Scholar
Rigtu, D., Ranger, J. & Robert, M. (1988) Clay minerals as indicators of some soil forming processes in the temperate zone. Bull. Mineral. 111, 625632.Google Scholar
Robert, M. (1973) The experimental transformation of mica toward smectite: relative importance of total charge and tetrahedral substitution. Clays Clay Miner. 21, 167174.Google Scholar
Robert, M. & Barshad, I. (1972) Sur les propriétés et la détermination des minéraux 2:1 expansibles (vermiculites-smectites). C. R. Acad. Sci. Paris, 275, série D, 1463-1465.Google Scholar
Robert, M., Hardy, M. & Elsass, F. (1991) Crystallochemistry, properties and organization of soil clays derived from major sedimentary rocks in France. Clay Miner. 26, 409420.Google Scholar
Romero, R., Robert, M., Elsass, F. & Garcia, C. (1992) Evidence by transmission electron microscopy of weathering microsystems in soils developed from crystalline rocks. Clay Miner. 27, 21–33.Google Scholar
T'serstevens, A., Rouxhet, P.G. & Herbillon, A.J. (1978) Alteration of mica surfaces by water and solutions. Clay Miner. 13, 401410.Google Scholar
Tamuna, T. (1957) Identification of the 14Å clay mineral component. Am. Miner. 42, 107–110.Google Scholar
Tardy, Y. & Gac, J.Y. (1968) Minéraux argileux et vermiculite-Al dans quelques sols et arènes des Vosges. Hypothése sur la néoformation des minéraux a 14Å. Bull. Serv. Carte géol. Alsace Lorraine, 21, 4, 285304.Google Scholar
Tessier, D. (1984) Etude expérimentale de I'organisation des matériaux argileux. Hydratation, gonflement et structuration au cours de la dessiccation et de la réhumectation. Thèse de Docteur és Sciences de l'Univ. Paris VII.Google Scholar
Van Oort, F., Jongmans, A.G. & Jaunet, A.M. (1994) The procession from optical light microscopy to transmission electron microscopy in the study of soils. Clay Miner. 29, 247254.CrossRefGoogle Scholar
Veblen, D.R., Guthrie, G.D., Livi, K.J.T. & Reynolds, R.C. (1990) High-resolution transmission electron microscopy and electron diffraction of mixed-layer illite/smectite: Experimental results. Clays Clay Miner., 38, 1-13.Google Scholar
Vicente, M.A., Razzaghe, M. & Robert, M. (1977) Formation of aluminium hydroxy vermiculite (intergrade) and smectite from mica under acidic conditions. Clay Miner. 12, 101–112.Google Scholar