Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-19T10:31:00.679Z Has data issue: false hasContentIssue false

Lithological control on the occurrence of chlorite in the diagenetic Wealden complex of the Bilbao anticlinorium (Basco-Cantabrian Basin, Northern Spain)

Published online by Cambridge University Press:  09 July 2018

D. Bartier
Affiliation:
Sédimentologie et Géodynamique, CNRS-URA 719, Université de Lille 1, 59655 Villeneuve d'Ascq-Cedex, France
M. Buatier
Affiliation:
Sédimentologie et Géodynamique, CNRS-URA 719, Université de Lille 1, 59655 Villeneuve d'Ascq-Cedex, France
M. Lopez
Affiliation:
Sédimentologie et Géodynamique, CNRS-URA 719, Université de Lille 1, 59655 Villeneuve d'Ascq-Cedex, France
J. L. Potdevin
Affiliation:
Sédimentologie et Géodynamique, CNRS-URA 719, Université de Lille 1, 59655 Villeneuve d'Ascq-Cedex, France
H. Chamley
Affiliation:
Sédimentologie et Géodynamique, CNRS-URA 719, Université de Lille 1, 59655 Villeneuve d'Ascq-Cedex, France
J. Arostegui
Affiliation:
Departamento de Mineralogia y Petrologia, Facultad de Ciencias, Universidad del Pais Vasco, 48080 Bilbao, Spain

Abstract

Sandstones and shales from the southern flank of the Bilbao anticline in the Gordexola and Orozko valleys, northwestern Spain, have been subjected to a detailed sedimentological, mineralogical and geochemical study. They are composed of proximal frontdeltaic sandbars interbedded with silty-clayey sediments and correspond to a prograding sequence of a deltaic system. The clay mineral assemblages of doublets of sandstones and shales are composed mainly of illite, chlorite and illite-smectite mixed-layers R3 (ISII). The clay diagenesis consists of the transformation of smectite and I-S mixed-layers to illite, the precipitation of Fe-rich chlorite in the pore spaces, and the alteration of micas to chlorite. According to petrographic, mineralogical and geochemical analyses, chlorite is more abundant in sandstones than in shales in both the <2 µm and coarser fractions. The relative abundance of chlorite increases in the sandstones located at the top of coarsening upward sandbars. Furthermore, chlorite formation occurs preferentially in the coarser grained sansdstones previously cemented by ankerite. The geochemical and petrological investigations suggest that chlorite formed during burial diagenesis in a relatively closed system.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

AlDahan, A.A. & Morad, S. (1986) Chemistry of detrital biotites and their phyllosilicate intergrowths in sandstones. Clays Clay Miner. 34, 539–548.CrossRefGoogle Scholar
Arostegui, J. (1989) La diagenesis en los materiales peliticos de la zona central de la cuenca vascocantabrian y anticlinorio de Bilbao. PhD thesis, Univ. Pais Vasco, Bilbao, Spain.Google Scholar
Arostegui, J., Zuluaga, M.C., Velasco, F., Ortega-Huertas, M. & Nieto, F. (1991) Diagenesis of the Central Basque-Cantabrian Basin (Iberian Peninsula) based on illite/smectite distribution. Clay Miner. 26, 535548.CrossRefGoogle Scholar
Bartier, D., Buatier, M., Lopez, M., Potdevin, J.L., Chamley, H. & Arostegui, J. (t996) Influence de la lithologie sur le controle de la diagenèse en domaine silicoclastique: Exemple dans le Crétacé Basco-Cantabrique (N. Espagne). 16th Réunion des Sciences de la Terre, Orldans, France, 131.Google Scholar
Bjørlykke, K. (1983) Diagenetic reactions in sandstones. Pp. 169-213 in: Sediment Diagenesis (Parker, A. & Sellwood, B.W., editors), D. Reidel Publishing Company, Holland.Google Scholar
Bjérlykke, K., Ramm, M. & Saigal, G.C. (1989) Sandstone diagenesis and porosity modification during basin evolution. Geol. Rundschau, 78, 243268.CrossRefGoogle Scholar
Boles, J.R. & Francks, S.G. (1979) Clay diagenesis in Wilcox sandstones of southwest Texas - implications of smectite diagenesis on sandstone cementation. J. Sed. Pet. 49, 5570.Google Scholar
Brown, G. & Brindley, G.W. (1980) X-ray diffraction procedures for clay mineral identification. Pp. 305–360 in: Crystal Structures of Clay Minerals and their X-ray Identification. (Brindley, G.W. & Brown, G., editors), Mineral. Soc., London, Monogr. 5.Google Scholar
Chang, H.K. (1986) Comparisons between the diagenesis of dioctahedral and trioctahedral smectite, Brazilian Offshore Basins. Clays Clay Miner. 34, 407423.Google Scholar
Choukroune, P., Seguret, M. & Galdeano, A. (1973) Caractéristiques et évolution structurale des Pyrénées: un modè1e de relations entre tectonique des plaques et Pyrénées. Bull. Soc. Géol. France, 7, 600-611.Google Scholar
Dimberline, A.J. (1986) Electron microscope and electron microprobe analysis of chlorite-mica stacks in the Wenlock turbidites, mid Wales, U.K. GeoL Mag. 123, 299306.Google Scholar
Dunoyer De Segonzac, G. (1969) Les minéraux argileux dans la diagenése. Passage au métamorphisme. Mém. Serv. Carte Géol. Als. Lorr. 29, 320 pp.Google Scholar
Herron, M.M. (1988) Geochemical classification of terrigenous sands and shales from core or log data. J. Sed. Pet. 58, 820829.Google Scholar
Hillier, S. (1993) Origin, diagenesis, and mineralogy of chlorite minerals in Devonian lacustrine mudrocks, Orcadian Basin, Scotland. Clays Clay Miner. 41, 240259.Google Scholar
Holtzapffel, T. (1985) Les minéraux argileux: préparation, analyse diffractométrique et détermination. Soc. Géol. du Nord, Spec. Pub. 12, 136 pp.Google Scholar
Hower, J., Eslinger, W.V., Hower, M. & Perry, E.A. (1976) Mechanism of burial metamorphism of argillaceous sediments. I. Mineralogical and chemical evidence. Geol. Soc. Amer. Bull. 87, 725737.2.0.CO;2>CrossRefGoogle Scholar
Hutcheon, I., Oldershaw, A. & Ghent, E.D. (1980) Diagenesis of Cretaceous sandstones of the Kootenay Formation at Elk Valley (southeast British Columbia) and Mt. Allan (southwestern Alberta). Geochim. Cosmochim. Acta, 44, 14251435.Google Scholar
Jahren, J.S. & Aagaard, P. (1989) Compositional variations in diagenetic chlorites and illites, and relationships with formation-water chemistry. Clay Miner. 24, 157170.Google Scholar
Jeans, C.V. (1984) Patterns of mineral diagenesis: An introduction. Clay Miner. 19, 263270.CrossRefGoogle Scholar
Kantorowicz, J. (1984) Nature, origin and distribution of authigenic clay minerals from Middle Jurassic Ravenscar and Brent Group sandstones. Clay Miner. 19, 359375.Google Scholar
Li, G., Peacor, D., Merriman, R.J., Roberts, B. & Van Der Pluijm, B.A. (1994) TEM and AEM constraints on the origin and significance of chlorite-mica stacks: an example from Central Wales, U.K. J. Struc. Geol. 16, 11391157.Google Scholar
Moncure, G.K., Lahan, R.W. & Siebert, R.M. (1984) Origin of secondary porosity and cement distribution in a sandstone/shale sequence from Frio Formation (Oligocene). Texas Gulf Coast. Am. Assoc. Petrol. Geol. Bull. 71, 191206.Google Scholar
Morad, S. (1990) Mica alteration reactions in Jurassic reservoir sandstones from the Haltenbanken area, offshore Norway. Clays Clay Miner. 38, 584590.Google Scholar
Muffler, L.J.P & White, D.E. (1969) Active metamorphism of upper Cenozoic sediments in the Salton Sea geothermal field and the Salton Trough, Southeast California. Geol. Soc. Am. Bull 80, 157182.CrossRefGoogle Scholar
Nieto, F., Ortega-Huertas, M., Peacor, D.R. & Arostegui, J. (1996) Evolution of illite/smectite from early diagenesis through incipient metamorphism in sediments of the Basque-Cantabrian Basin. Clays Clay Miner. 44, 304323.Google Scholar
Pettijohn, F.J., Potter, P.E. & Siever, R. (1972) Sand and Sandstones. Springer-Verlag, Berlin, 618 pp.Google Scholar
Rat, P. (1983) Les régions basco-cantabrique et nordibérique. Présentation, problèmes posés. Pp. 1 – 19 in: Vue sur le Crétacé basco-cantabrique et nordibérique, Mém. Géol. Univ. Dijon, France 9.Google Scholar
Reynolds, R.C. (1985) NEWMOD: a computer program for the calculation of one-dimensional diffraction patterns of mixed-layered clays. R. C, Reynolds Jr., 8 Brook Dr., Hanover, New Hampshire 03755, USA.Google Scholar
Rinckenbach, T. (1988) Diagenése minérale des sédiments pétroliers du delta fossile de La Mahakam (Indonésie). Evolution minéralogique et isotopique des composants argileux et histoire thermique. PhD thesis, Univ. Louis Pasteur, Strasbourg, France.Google Scholar
Ruiz Cruz, M.D. (1994) Diagenetic development of clay and related minerals in deep water sandstones (S. Spain). Evidence of lithological control. Clay Miner. 29, 93104,CrossRefGoogle Scholar
Samuel, J., Rouault, R. & Besnus, Y. (1985) Analyse multiélémentaire standardisée des matfriaux géologiques en spectrométrie d'émission par plasma a couplage inductif. Analusis 13, 312–317.Google Scholar
Spötl, C., Houseknecht, D.W. & Longstaffe F,J, (1994) Authigenic chlorites in sandstones as indicators of high-temperature diagenesis, Arkoma Foreland Basin, USA. d. Sed. Res. A64, 3, 553566.Google Scholar
Sullivan, K.B. (1988) Sandstone and shale diagenesis of Frio Formation (Oligocene), Texas Gulf Coast: a close look at sandstoneA∼hale contatcs. Master's thesis, Texas, UK.Google Scholar
Sullivan, K.B. & McBride, E.F. (1991) Diagenesis of sandstones at shales contacts and diagenetic heterogeneity, Frio Formation, Texas. Am. Assoc. Petrol. Geol. Bull. 75, 121138.Google Scholar
Surdam, R.C., MacGowan, D.B. & Dunn, T.L. (1989) Diagenetic pathways of sandstone and shale sequences. Contrib. Geol., Univ. Wyoming, 27, 21–31.Google Scholar
Tillman, R.W. & Almont, W.R. (1979) Diagenesis of Frontier Formation offshore bar sandstone. Spearhead Ranch field, Wyoming. Soc. Econ. Paleont. Miner. Spec. Publ. 26, 337378.Google Scholar
Tucker, M.E. (1991) Sedimentary Petrology. Blackwell Scientific Publication, London.Google Scholar
Whitney, G. & Northrop, H.R. (1987) Diagenesis and fluid flow in the San Juan basin, New Mexico. - Regional zonation in the mineralogy and stable isotope composition of clay minerals in sandstones. Am. J. Sci. 287, 353382.Google Scholar