Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T16:17:55.377Z Has data issue: false hasContentIssue false

L'alteration lateritique debutante des pyroxenites de Jacuba, Niquelandia, Bresil

Published online by Cambridge University Press:  09 July 2018

F. Colin
Affiliation:
Laboratoire de Pétrologie de la Surface, ERA au CNRS n° 220, 40 Avenue du Recteur Pineau, 86022 Poitiers Cedex, France
Y. Noack
Affiliation:
Laboratoire de Pétrologie de la Surface, ERA au CNRS n° 220, 40 Avenue du Recteur Pineau, 86022 Poitiers Cedex, France
J. -J. Trescases
Affiliation:
Laboratoire de Pétrologie de la Surface, ERA au CNRS n° 220, 40 Avenue du Recteur Pineau, 86022 Poitiers Cedex, France
D. Nahon
Affiliation:
Laboratoire de Pétrologie de la Surface, ERA au CNRS n° 220, 40 Avenue du Recteur Pineau, 86022 Poitiers Cedex, France

Resume

L'altération latéritique débutante des orthopyroxènes et clinopyroxènes de Niquelandia, Brésil, montre plusieurs stades. Le premier stade facultatif est la formation de produits ‘amorphes’ dont la composition chimique proche de celle des minéraux parentaux, montre déjà un enrichissement en nickel. Le deuxième stade est marqué par l'apparition de phyllosilicates dont la nature et la composition chimique varient selon le degré de porosité de la roche parentale. Cette porosité contrôle également la distribution du nickel dans les différents phyllosilicates, (saponite, talc, pimélite). Les pyroxènes ne contenant pas ou très peu de nickel, il est clair que le nickel qui s'accumule dans les produits de l'altération est totalement importé avec les eaux de percolation. L'origine de ce nickel est à rechercher plus haut dans les profils ou plus en amont dans la séquence, là où les dunites sont présentes.

Abstract

Abstract

The initial weathering products under lateritic conditions of orthopyroxenes and clinopyroxenes in Jacuba, Niquelandia, Brasil, are amorphous and have chemical compositions very near those of the parent minerals but with enrichment of Ni. Later products are phyllosilicates such as talc, saponite and pimelite, the nature and composition of which vary with the development of porosity and fissuring of the parent rock. It appears that Ni distribution between these phyllosilicates is also controlled by fissure development. As the parent pyroxenes are Ni-depleted, it is clear that Ni accumulation in the structures of the phyllosilicate weathering products is a result of solution transfer from other parts of the profile.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Araujo, V.A., Mello, J.C.R. De & Oguino, K. (1972) Projeto Niquelandia. Relatorio final. Convenio DNPM/CPRM Goiana, 224 pp.Google Scholar
Beaufort, D., Dudoignon, P., Proust, D., Parneix, J.C. & Meunier, A. (1983) Microdrilling in thin section: a useful method for the identification of clay minerals in situ. Clay Miner. 18, 219222.Google Scholar
Berner, R.A., Sjoberg, E.L., Velbel, M.A. & Krom, M.D. (1980) Dissolution of pyroxenes and amphiboles during weathering. Science 207, 12051206.CrossRefGoogle ScholarPubMed
Berner, R.A. & Schott, J. (1982) Mechanism of pyroxene and amphibole weathering. II. Observation of soil grains. Am. J. Sci. 282, 12141231.Google Scholar
Besnus, Y., Fusil, G., Janot, C., Pinta, M. & Siefferman, G. (1975) Characteristics of some weathering products of chromitic ultrabasic rocks in Bahia state, Brazil: nontronites, chlorites and chromiferous talc. Proc. Int. Clay Conf., Mexico City 2734.Google Scholar
Bosio, N.J., Hurst, V.J. & Smith, R.L. (1975) Nickeliferous nontronite, a 15 Å garnierite, at Niquelandia, Goias, Brazil. Clays & Clay Miner. 23, 400403.CrossRefGoogle Scholar
Brigatti, M.F. (1981) Hisingerite: a review of its crystal chemistry. Proc. Int. Clay Conf. Bologna and Pavia, 97110.Google Scholar
Brindley, G.W. (1978) The structure and chemistry of hydrous nickel-containing silicate and aluminate minerals. BRGM Bull. II, 3, 233245.Google Scholar
Brindley, G.W. & Hang, Pham Thi (1973) The nature of garnierite I. Structure, chemical compositions and color characteristics. Clays & Clay Miner. 21, 2740.Google Scholar
Brindley, G.W. & Souza, J.V.de (1975a) Nickel containing montmorillonites and chlorites from Brazil, with remarks on schuchardite. Miner. Mag. 46, 141152.Google Scholar
Brindley, G.W. & Souza, J.V.de (1975b) A golden-colored, ferrinickel chloritic mineral from Morro do Niquel, Minas Gerals, Brazil. Clays & Clay Miner. 23, 1115.Google Scholar
Brindley, G.W., Bish, D.L. & Wan, H.M. (1979) Composition, structures and properties of nickel-containing minerals in the kerolite-pimelite series. Am. Miner. 64, 615625.Google Scholar
Colin, F., Parron, C., Bocquier, G. & Nahon, D. (1980) Nickel and chromium concentrations by chemical weathering of pyroxenes and olivines: metallogeny of mafic and ultramafic complexes. Proc. UNESCO Int. Syrup. Athens, 2, 5666.Google Scholar
Decarreau, A. (1981a) Mesure expérimentale des coefficients de partage solide/solution pour les éléments de transition A2+ dans les smectites magnésiennes. C.R. Acad. Sc. Paris 292, 459462.Google Scholar
Decarreau, A. (1981b) Cristallogénèse á basse température de smectites trioctédriques par vieillissement de coprécipités silicométalliques de formule (Si4_xAlx)M 2+ 3 O 11 nH2O oú x varie de 0 á 1 oú M2+ = Mg-ni-Co-Zn-Fe-Cu-Mn. C.R. Acad. Sc. Paris 292, 61-64.Google Scholar
Decarreau, A. (1984) Etude éxperimentale de la cristallogenèse des smectites. Mesures des coefficients de partage smectite trioctaédrique-solution aqueuse pour les métaux M2+ de la première série de transition. Sci. Geol., Mere. 74 (sous presse).Google Scholar
Deer, W.A., Howie, R.A. & Zussman, J. (1978) Single-chain silicates. Rock-Forming Minerals, Vol. 2A. Longman, London.Google Scholar
Eggleton, R.A. (1975) Nontronite topotaxial after hedenbergite. Am. Miner. 60, 10631068.Google Scholar
Faust, G.T. (1966) The hydrous nickel magnesium silicates—the garnierite group. Am. Miner. 5I, 279298.Google Scholar
Figueiredo, A.N. de, Souza, E.P. de & Mello, J.C.R. de (1972) Projeto goianesia. Barro Alto. Relatorio final. Convenio DNPM/CPRM, Goiania, 129 pp.Google Scholar
Figueiredo, A.N. de, Motta, J. & Marqueues, V.J. (1975) Estudo eomparativo entre us complexos de Barro Alto e do Tocantins, Goias. Bey. Bras. de Geoc. 5, 1529.Google Scholar
Fontanaud, A. (1982) Les faeids d'altération supergéne des roches ultrabasiques. Thése Université de Poiters.Google Scholar
Gerard, P. & Herbillon, A.J. (1983) Infrared studies of Ni-bearing clay minerals of the kerolite-pimelite series. Clays & Clay Miner. 31, 143151.Google Scholar
Giese, R.F. (1975) Interlayer bonding in talc and pyrophyllite. Clays & Clay Miner. 23, 165166.Google Scholar
Gonord, H. & Trescases, J.J. (1970) Observation nouvelle sur la formation post-nèocéne de Muro. C.R. Acad. Sc. Paris 270, 584587.Google Scholar
Kohyama, N., Shimoda, S. & Sudo, T. (1973) Iron rich saponite. Clays & Clay Miner. 21, 229237.Google Scholar
Kohyama, N. & Sudo, T (1975) Hisingerite occurring as a weathering product of iron-rich saponite. Clays. Clay Miner. 23, 215218.Google Scholar
Koster, H.M. (1981) The crystal structure of 2:1 layer-silicates. Proc. Int. Clay Conf. Bologna and Pavia, 4172.Google Scholar
Maksimovic, Z. (1966) β-kerolite-pimelite series from Gules Mountains, Yugoslavia. Proc. Int. Clay Conf. Jerusalem 1, 97105.Google Scholar
Maksimovc, Z. (1969) Nickeliferous minerals found in the fossile crust of weathering in Gules (Yugoslavia). Ann. Geol. Penin. Balkanique 34, 577596.Google Scholar
Manceau, A. (1984) Localisation du nickel dans les phyllosilicates. Application aux minerals de nickel de Nouvelle-Calédonie. Thése, Université Paris VII.Google Scholar
Melfi, A.J., Trescases, J.J., Barros de Oliveira, S.M. (1980) Les latérites nickéliféres du Brésil. ORSTOM, cahiers sér. Géol. 11, 12321243.Google Scholar
Millot, G. (1949) Relations entre la constitution et la genése des roches sédimentaires argileuses. Géol. Appli. Prospec. Min. 2, 1352.Google Scholar
Millot, G. (1964) Géologie des Argiles;Altérations-Sédimentologie-Géochimie. Masson et Cie, Paris.Google Scholar
Millot, G. & Bonifas, M. (1955) Transformations isovolumétriques dans les phénoménes de latérisation et de bauxitisation. Serv. Carte géoL Als.-Lorr. 8, 320.Google Scholar
Nahon, D. & Colin, F. (1982) Chemical weathering of orthopyroxenes under lateritic conditions. Am. J. Sci. 282, 12321243.Google Scholar
Nahon, D., Paquet, H. & Delvigne, J. (1982) Lateritic weathering of ultramafic rocks and the concentration of nickel in the Western Ivory Coast. Econ. Geol 77, 11591175.Google Scholar
Nakajima, Y. & Ribbe, P.H. (1980) Alteration of pyroxenes from Hokkaido, Japan, to amphibole, clays and other biopyriboles. Neues ,Jb. Miner. 6, 258268.Google Scholar
Paquet, H., Duplay, J., Nahon, D., Tardy, Y. & Millot, G. (1983) Analyses chimiques de particules isolées dans les populations de minétraux argileux. C.R. Acad. Sc. Paris 296, ser. III, 699704.Google Scholar
Paquet, H., Duplay, J. & Nahon, D. (1981) Variations in the composition of phyllosilicates monoparticules in a weathering profile of ultrabasic profile of ultrabasic rocks. Proc. Int. Clay Conf. Bologna and Pavia, 595603.Google Scholar
Pecora, W.T. & Barbosa, A.L.M. (1944) Jazidas de niquele cobalto de Sao José dos Tocantino. Estado de Goiaz. DNPM 64.Google Scholar
Proust, D. (1983) Mécanisme de l'altdration supergène des roches basiques. Etude des arédnes d'orthoamphibolites du Limousin et de glaucophanite de l'fle de Groix, Morbihan. Thése, Universite Poitiers.Google Scholar
Schott, J., Berner, R.A. & Sjoberg, E.L. (1981) Mechanism of pyroxene and amphibole weathering. I. Experimental studies of iron-free minerals. Géochim. Cosmochim. Acta 45, 21232136.Google Scholar
Souza, A. (1973) Geologia e geocronologia do complexo Barro Alto, Goias. Tese Dout. FFCL Rio Claro (SP).Google Scholar
Sudo, T. (1954) Iron-rich saponite found from Tertiary iron sand beds in Japan. J. Geol. Soc. Japan 59, 1827.Google Scholar
Sudo, T. & Nakamura, T. (1952) Hisingerite from Japan. Am. Miner. 37, 618621.Google Scholar
Trescases, J.J. (1975) L'évolution géologique supergène des roches ultrabasiques en zone tropicale. Formation des gisements nickélifères de Nouvelle-Calédonie. Mém. ORSTOM, 259 pp.Google Scholar
Wiewora, A., Dubinska, E. & Iwasinska, I. (1981) Mixed-layering in Ni-containing talc-like minerals from Szklary, Lower Silesia, Poland. Proc. Int. Clay Conf. Bologna and Pavia, 111126.Google Scholar