Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-19T06:04:55.980Z Has data issue: false hasContentIssue false

Kaolinite-to-dickite reaction in sandstone reservoirs

Published online by Cambridge University Press:  09 July 2018

D. Beaufort
Affiliation:
CNRS UMR 6532, Université de Poitiers 40 A v. du Recteur Pineau 86022 Poitiers Cedex
A. Cassagnabere
Affiliation:
CNRS UMR 6532, Université de Poitiers 40 A v. du Recteur Pineau 86022 Poitiers Cedex
S. Petit
Affiliation:
CNRS UMR 6532, Université de Poitiers 40 A v. du Recteur Pineau 86022 Poitiers Cedex
B. Lanson
Affiliation:
LGIT IRIGM, Université J. Fourier, CNRS - BP53, 38041 Grenoble Cedex 9
G. Berger
Affiliation:
Laboratoire de Géochimie, UMR 5563 CNRS Université Paul Sabatier, 38 rue des 36 ponts, 31054 Toulouse Cedex
J. C. Lacharpagne
Affiliation:
Elf A quitaine Production, D T1S/SED, 64018 Pau Cedex, France
H. Johansen
Affiliation:
Institutt For Energiteknikk, PO Box 40, N-2007 Kjeller, Norway

Abstract

The SEM, XRD, FFIR and DTA analyses of different size-fractions of clay material from sandstone reservoirs which have experienced a large range of burial conditions have been used to examine the different steps of the depth-related kaolinite-dickite reaction. Dickite progressively replaced kaolinite within a range of burial depths estimated between about 2500 m and 5000 m. The kaolinite-to-dickite reaction proceeds by gradual structural changes concomitant to crystal coarsening and change from booklet to blocky morphology. The crystallization of dickite proceeds by two distinct paths: (1) Accretion of new material from either dissolution of smaller unstable kaolinite crystals and/or detrital minerals (chiefly feldspars), on early-formed coarser metastable kaolinite crystals which exert extended morphological control on the growing crystals. (2) Neoformation of ordered dickite which will continue to grow by a dissolution-crystallization process. The kaolinite-todickite reaction is kinetically controlled and anomalies in the kaolinite/dickite ratio observed in certain sandstone reservoirs may be used to assess the timing of invasion by hydrocarbons.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bailey, S.W. (1963) Polymorphism of the kaolin minerals. Am. Miner. 48, 11961209.Google Scholar
Baronnet, A. (1981) Les transformations polytypiques. Pp. 51 – 121 in: Les Transformations de Phases dans les Solides Minéraux (Gabis, V. & Lagache, M., editors). Société Française de Minéralogie et Cristallographie, Paris.Google Scholar
Barth, T. & Nielsen, S.B. (1993) Estimating kinetic parameters for generation of petroleum and single components from hydrous pyrolysis of source rocks. Energy Fuels, 7, 100110.Google Scholar
Berger, G., Lacharpagne, J.C., Velde, B., Beaufort, D. & Lanson, B. (1995) Mécanismes et contraintes cinétiques des réactions d'illitisation d'argiles sédimentaires, détuits de modélisation d'interaction eauroche. Bull. Centres Rech. Explor.-Prod. Elf Aquitaine, 19, 225234.Google Scholar
Berger, G., Lacharpagne, J.C., Velde, B., Beaufort, D. & Lanson, B. (1997) Kinetic constraints on illitization reactions and the effect of organic diagenesis in sandstone/shale sequences. Appl. Geochem. 12, 2335.Google Scholar
Bjørlykke, K. & Aagaard, P. (1992) Clay minerals in North Sea sandstones. Pp. 65–80 in: Origin, Diagenesis and Petrophysics of Clay Minerals in Sandstones (Houseknecht, D.W. & Pittman, E.D., editors). SEPM spec. publ. 47.Google Scholar
Brindley, G.W. & Porter, A.R.D. (1978) Occurrence of dickite in Jamaica - Ordered and disordered varieties. Am. Miner. 63, 554562.Google Scholar
Brindley, G.W., Kao, C.C., Harisson, J.L., Lipsicas, M. & Raythatha, R. (1986) Relations between structural disorder and other characteristics of kaolinites and dickites. Clays Clay Miner. 34, 239249.Google Scholar
Carroll, S.E. & Walther, J.W. (1990) Kaolinite dissolution at 25° 60° and 80°. Am. J. Sci. 290, 797810.CrossRefGoogle Scholar
Drits, V. & Tchoubar, C. (1990) The modelization method in the determination of the structural characteristics of some layer silicates: Internal structure of the layers, nature and distribution of the stacking faults. Pp. 233-303 in: X-ray Diffraction by Disordered Lamellar Structures (Drits, V. & Tchoubar, C., editors). Springer-Verlag.CrossRefGoogle Scholar
Eberl, D. & Blum, A.(1993) Illite crystallite thickness by X-ray diffraction. Pp. 124–153 in: Computer Application to X-ray Powder Diffraction Analysis of Clay Minerals (Reynolds, R.C. & Walker, J.R., editors). CMS Workshop Lectures 5, Clay Mineral Society.Google Scholar
Eberl, D., Środoń, J., Kralick, M., Taylor, B.E. & Peterman, Z.E. (1990) Ostwald ripening of clays and metamorphic minerals. Science, 248, 477–478.Google Scholar
Eckhardt, F.J. (1965) Über den einfluss der temperatur auf den kristallographishen ordnungsgrad von kaolinit. Proc. Int. Clay Conf. Stockholm, 2, 137145.Google Scholar
Eckhardt, F.J. & Von Gaertner, H.R. (1962) Zur enstehung und umbildung der kaolin-Kohlentonsteine. Forschr. Geol. Rheinl. West[. 3 (2), 623-640.Google Scholar
Ehrenberg, S.N. & Nadeau, P.H. (1989) Formation of diagenetic illite in sandstones of the Garn Formation, Haltenbanken area, mid-Norwegian continental shelf. Clay Miner. 24, 233253.Google Scholar
Ehrenberg, S.N., Aagaard, P., Wilson, M.J., Fraser, A.R. & Duthie, D.M.L. (1993) Depth-dependent transformation kaolinite to dickite in sandstones of the Norwegian Continental Shelf. Clay Miner. 28, 325352.CrossRefGoogle Scholar
Ganor, J., Mogollon, J.L. & Lasaga, A. (1995) The effect of pH on kaolinite dissolution rates and on activation energy. Geochim. Cosmochim. Acta, 59, 1037–1052.Google Scholar
Gaupp, R., Matter, A., Platt, J., Ramseyer, K. & Walzebuck, J. (1993) Diagenesis and fluid evolution of deeply buried Permian (Rotliegend) gas reservoirs northwest Germany. Am. Assoc. Petrol. Geol. Bull. 77, 11111128.Google Scholar
Giese, R.F. Jr. (1988) Kaolin minerals: structures and stabilities. Pp. 29–66 in: Hydrous Phyllosilicates (Exclusive of Micas) (Bailey, S.W., editor). Reviews in Mineralogy 19, Mineralogical Society of America, Washington DC.Google Scholar
Giles, M.R., Stevenson, S., Martin, S., Cannon, S.J.C., Hamilton, P.J. & Samways, G.M. (1992) The reservoir properties and diagenesis of the Brent Group: a regional perspective. Pp. 289–327 in: Geology of the Brent Group (Morton, A.C., Haszeldine, R.S., Giles, M.R. & Brown, S., editors). Geol. Soc. Spec. Pub. 61.Google Scholar
Glasmann, J.R., Lundegard, P.D., Clark, R.A., Penny, B.K. & Collins, I.D. (1989) Geochemical evidence for the history of diagenesis and fluid migration: Brent sandstone, Heather field, North Sea. Clay Miner. 24, 255284.CrossRefGoogle Scholar
Haszeldine, S., Brint, J.F., Fallick, A.E., Hamilton, P.J. & Brown, S. (1992) Open and restricted hydrologies in Brent Group diagenesis: North Sea. Pp. 401-419 in: Geology of the Brent Group (Morton, A.C., Haszeldine, R.S., Giles, M.R. & Brown, S., editors). Geol. Soc. Spec. Pub. 61.Google Scholar
Hurst, A. (1985) Mineralogy and diagenesis of Lower Jurassic sediments of the Lossiemouth borehole, north-east Scotland. Proc. Yorks. Geol. Soc. 45, 189197.CrossRefGoogle Scholar
Hurst, A. & Irwin, H. (1982) Geological modelling of clay diagenesis in sandstones. Clay Miner. 17, 5–22.Google Scholar
Inoue, A., Velde, B., Meunier, A. & Touchard, G. (1988) Mechanism of illite formation during smectite-toillite conversion of hydrothermal origin. Am. Miner. 73, 13251334.Google Scholar
Kantorowicz, J. (1984) The nature, origin and distribution of authigenic clay minerals from Middle Jurassic Ravenscar and Brent Group sandstones. Clay Miner. 19, 359375.Google Scholar
Kisch, H.J. (1983) Mineralogy and petrology of burial diagenesis (burial metamorphism) and incipient metamorphism in clastic rocks. Pp. 289–494 in: Diagenesis in Sediment and Sedimentary Rocks, 2 (Larsen, G. & Chilingar, G.W., editors). Elsevier, Amsterdam.Google Scholar
Lanson, B. & Champion, D. (1991) The I/S to illite reaction in the late stage of diagenesis. Am. J. Sci. 291, 473506.CrossRefGoogle Scholar
Lanson, B., Beaufort, D., Berger, G., Baradat, J. & Lacharpagne, J.C. (1996) Illitization of diagenetic kaolinite-to-dickite conversion series: late stage diagenesis of the Lower Permian Rotliegend sandstone reservoir, off-shore of The Netherlands. J. Sed. Res. 66, 501518.Google Scholar
Lanson, B., Beaufort, D., Berger, G., Petit, S. & Lacharpagne, J.C. (1995) Evolution de la structure cristallographique des min6raux argileux dans le r6servoir gr6seux Rotliegend des Pays Bas. Bull. Centres Rech. Explor.-Prod. Elf Aquitaine, 19, 243265.Google Scholar
Lee, M., Aronson, J.L. & Savin, S.M. (1989) Timing and conditions of the Permian Rotliegend sandstone diagenesis, southern North Sea: K/Ar and oxygen isotopic data. Am. Assoc. Petrol. Geol. Bull. 73, 195215.Google Scholar
Mansfield, C.F. & Bailey, S.W. (1972) Twin and pseudotwin intergrowths in kaolinite. Am. Miner. 57, 411425.Google Scholar
Mackenzie, R.C. (1970) Simple phyllosilicate based on gibbsite and brucite-like sheets. Pp. 498–537 in: Differential Thermal Analysis (Mackenzie, R.C., editor) Academic Press London & New York.Google Scholar
McAulay, G.E., Burley, S.D., Fallick, A.E. & Kusnir, N.J. (1994) Paleohydrodynamic fluid flow regimes during diagenesis in the Brent Group in the Hutton-NW Hutton reservoirs: constraints from oxygen isotope studies of authigenic kaolin and reverse flexural modelling. Clay Miner 29, 609626.CrossRefGoogle Scholar
McCulloch, M.T., Gregory, R.T., Wasserburg, G.J. & Taylor Jr., H.P. (1981) Sm-Nd, Rb-Sr and 18O/16O isotopic systematics in oceanic crustal section: Evidence from the Samail ophiolite. J. Geophys. Res. 86, 27212735.Google Scholar
Moore, D.M. & Reynolds Jr., R.C. (1989) Sample preparation techniques for clay minerals. Pp. 179-201 in: X-ray Diffraction and the Identification and Analysis of Clay Minerals (Moore, D.M. & Reynolds, R.C. Jr., editors). Oxford University Press Oxford & New York.Google Scholar
Nadeau, P.H. & Bain, D.C. (1986) Composition of some smectites and diagenetic illitic clays and implications for their origin. Clays Clay Miner. 34, 455–465.Google Scholar
Osborne, M., Haszeldine, M.R. & Fallick, A.E. (1994) Variation in kaolinite morphology with growth temperature in isotopically mixed pore-fluids, Brent Group, UK North Sea. Clay Miner 29, 591608.Google Scholar
Ruiz Cruz, M.D. & Moreno Real, L. (1993) Diagenetic kaolinite/dickite (Betic Cordilleras, Spain). Clays Clay Miner. 41, 570579.Google Scholar
Shutov, V.D., Aleksandrova, A.V. & Losievskaya, S.A. (1970) Genetic interpretation of the polytypism of the kaolinite group in sedimentary rocks. Sedimentology, 15, 6982.CrossRefGoogle Scholar
Stoch, L. (1964) Thermal dehydroxilation of minerals of the kaolinite group. Bull. Acad. Polonaise Sci. 12, 173180.Google Scholar
Taylor, H.P. Jr. (1977) Water/rock interactions and the origin of H2O in granitic batholith. J. Geol. Soc. Lond. 133, 509559.Google Scholar
Thomas, M. (1986) Diagenetic sequence and K/Ar dating in Jurassic sandstones, Central Viking Graben: Effects on reservoir properties. Clay Miner. 21, 695710.Google Scholar
Velde, B. & Renac, C. (1996) Smectite-to-illite conversion and K/Ar ages. Clay Miner. 31, 2532.Google Scholar