Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T16:35:54.125Z Has data issue: false hasContentIssue false

Iron mineralogy of a grey Oxisol from the Jequitinhonha River Basin, Minas Gerais, Brazil

Published online by Cambridge University Press:  09 July 2018

A. C. Silva
Affiliation:
Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), 39100-000, Diamantina, Minas Gerais, Brazil
F. H. A. Bispo
Affiliation:
Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), 39100-000, Diamantina, Minas Gerais, Brazil
S. De Souza
Affiliation:
Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), 39100-000, Diamantina, Minas Gerais, Brazil
J. D. Ardisson
Affiliation:
Centro de Desenvolvimento da Tecnologia Nuclear, 31270-901, Belo Horizonte, Minas Gerais, Brazil
A. J. S. Viana
Affiliation:
Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), 39100-000, Diamantina, Minas Gerais, Brazil
M. C. Pereira
Affiliation:
Instituto de Ciência e Tecnologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, 39803-371, Teófilo Otoni, Minas Gerais, Brazil
F. R. Costa
Affiliation:
Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), 39100-000, Diamantina, Minas Gerais, Brazil
E. Murad*
Affiliation:
Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), 39100-000, Diamantina, Minas Gerais, Brazil
J. D. Fabris
Affiliation:
Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), 39100-000, Diamantina, Minas Gerais, Brazil
*

Abstract

The mineralogy of the silt fraction of a 1.5 m-deep, well developed, intensely weathered, greyish soil profile from a toposequence on a tableland covered by agricultural crops in the upper valley of the Jequitinhonha river basin, Minas Gerais, Brazil, has been studied by X-ray powder diffraction, 57Fe Mössbauer spectroscopy at 298 K and 80 K, and vibrating sample magnetometry. Mössbauer data collected at room temperature indicated about 17 atom% of the iron content of the sample to be structural Fe2+ in phyllosilicates, which X-ray diffraction showed to be mainly halloysite and kaolinite. The magnetization curve also indicates the presence of a ferrimagnetic phase, tentatively identified by Mössbauer spectroscopy as maghemite (γ-Fe2O3).

These findings support a pedogenetic model for this soil profile, by which the remaining Fe2+ bearing minerals were first formed under relatively anoxic palaeo-conditions of an intense hydric regime. Subsequent drier local conditions, due to a much improved drainage, favoured intensive weathering, leading to the presently developed Oxisol. Even under the more oxidative conditions, part of the Fe2+ -containing phyllosilicates still remained in the profile, which is believed to impart the rather unusual greyish colour (Munsell 10YR 3/2) to this deep tropical soil.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alleoni, L.R.F. & Camargo, O.A. (1994) Pontos de efeito salino nulo de Latossolos Ácricos. Revista Brasileira de Ciência do Solo, 18, 175–180.Google Scholar
Arduino, E., Barberis, E. & Boero, V. (1989) Iron oxides and particle aggregation in B horizons of some Italian soils. Geoderma, 45, 319–329.Google Scholar
Azevedo, A.C. & Bonumá, A.S. (2004) Partículas coloidais, dispersão e agregação em latossolos. Ciência Rural, 34, 609–617.Google Scholar
Barberis, E., Ajmone Marsan, F., Boero, V. & Arduino, E. (1991) Aggregation of soil particles by iron oxides in various size fractions of soil B horizons. European Journal of Soil Science, 42, 535–542.Google Scholar
Bispo, F.H.A., Silva, A.C. & Vidal Torrado, P. (2011a) Highlands of the upper Jequitinhonha valley, Brazil. I – Characterization and classification. Revista Brasileira de Ciência do Solo, 35, 1069–1080.CrossRefGoogle Scholar
Bispo, F.H.A., Silva, A.C., Vidal Torrado, P. & Souza Junior, V.S. (2011b) Highlands of the upper Jequitinhonha valley, Brazil: II – Mineralogy, micromorphology, and landscape evolution. Revista Brasileira de Ciência do Solo, 35, 1081–1091.Google Scholar
Breemen N., van & Buurman, P. (2002) Soil Formation, 2nd ed. Kluwer Academic, Dordrecht, 404 pp.Google Scholar
Buol, S.W. & Eswaran, H. (2000) Oxisols. Advances in Agronomy, 68, 151–195.Google Scholar
Coelho, M.R., Vidal-Torrado, P. & Ladeira, F.S.B. (2001) Macro e micromorfologia de ferricretes nodulares desenvolvidos de Arenito do Grupo Bauru, Formação Adamantina. Revista Brasileira de Ciência do Solo, 25, 371–385.Google Scholar
Cunha, P., Marques Junior, J., Curi, N., Pereira, G.T. & Lepsch, I.F. (2005) Superfícies geomórficas e atributos de Latossolos em uma seqüência Arenítico-Basáltica da região de Jaboticabal (SP). Revista Brasileira de Ciência do Solo, 29, 81–90.Google Scholar
Curi, N. & Franzmeier, D.P. (1987) Effect of parent rocks on chemical and mineralogical properties of some Oxisols in Brazil. Soil Science Society of America Journal, 51, 153–158.Google Scholar
EMBRAPA – Empresa Basileira de Pesquisa Agropecuária (2006) Centro Nacional de Pesquisa de Solos. Sistema Brasileiro de Classificação de Solos, 2nd ed. Embrapa Solos, Rio de Janeiro, 306 pp.Google Scholar
Fernandes, R.B.A., Barrón, V., Torrent, J. & Fontes, M.P.F. (2004) Quantificação de óxidos de ferro de Latossolos brasileiros por espectroscopia de refletância difusa. Revista Brasileira de Ciência do Solo, 28, 245–257.CrossRefGoogle Scholar
Ferreira, C.A., Silva, A.S., Vidal Torrado, P. & Rocha, W.W. (2010) Genesis and classification of Oxisols in a highland toposequence of the upper Jequitinhonha Valley (MG). Revista Brasileira de Ciência do Solo, 34, 195–209.Google Scholar
Figueiredo, M.A., Varajão, A.F.D.C., Fabris, J.D. & Loutfi, I.S. (2002) Aspectos pedogeomorphológicos e mineralógicos de uma topossequência de solos gnáissicos no Complexo Bação, Quadrilátero Ferrífero, MG, Brasil. Pesquisas em Geociências, 29(1), 81–90.Google Scholar
Figueiredo, M.A., Fabris, J.D., Varajão, A.F.D.C., Couceiro, P.R.C., Loutfi, I.S., Azevedo, I.S. & Garg, V.K. (2006) Óxidos de ferro de solos formados sobre gnaisse do Complexo Bação, Quadrilátero Ferrífero, Minas Gerais. Pesquisa Agropecuária Brasileira, 41, 313–321.Google Scholar
Goldberg, S. (1989) Interaction of aluminum and iron oxides and clay minerals and their effect on soil physical properties: a review. Communications in Soil Science and Plant Analysis, 20, 1181–1207.Google Scholar
Inda Junior, A.V. & Kämpf, N. (2003) Avaliação de procedimentos de extração dos óxidos de ferro pedogênicos com ditionito-citrato-bicarbonato de sódio. Revista Brasileira de Ciência do Solo, 27, 1139–1147.Google Scholar
Inda Junior, A.V. & Kämpf, N. (2005) Variabilidade de goethita e hematita via dissolução redutiva em solos de região tropical e subtropical. Revista Brasileira de Ciência do Solo, 29, 851–866.CrossRefGoogle Scholar
Kämpf, N., Resende, M. & Curi, N. (1988) Iron oxides in Brazilian Oxisols. Pp. 71–77 in: Proceedings of the Eighth International Soil Classification Workshop – Classification, Characterization and Utilization of Oxisols, Rio de Janeiro, Brazil (Beinroth, F.H., Camargo, M.N. & Eswaran, H., editors). Serviço Nacional de Levantamento e Conservação de Solos, Brazil.Google Scholar
Kämpf, N. & Curi, N. (2000) Óxidos de ferro: Indicadores de ambientes pedogê nicos e geoquímicos. Tópicos em Ciência do Solo, 1, 107–138.Google Scholar
Kämpf, N. & Curi, N. (2003) Argilominerais em solos brasileiros. Tópicos em Ciência do Solo, 3, 1–54.Google Scholar
Kohyama, N., Fukushima, K. & Fukami, A. (1978) Observation of the hydrated form of tubular halloysite by an electron microscope equipped with an environmental cell. Clays and Clay Minerals, 26, 25–40.Google Scholar
Konen, M.E., Burras, C.L. and Sandor, J.A. (2003) Organic carbon, texture, and quantitative color measurement relationships for cultivated soils in north central Iowa. Soil Science Society of America Journal, 67, 1823–1830.Google Scholar
Mehlich, A. (1953) Determination of P, Ca, Mg, K, Na, and NH4. Short Test Methods Used in Soil Testing Division, Department of Agriculture, Raleigh, North Carolina. North Carolina Soil Test Division, Raleigh, N.C., USA.Google Scholar
Miklós, A.A.W. (1992) Biodynamique d’une couveture pédologique dans la region de Botucatú, Brésil. PhD Thesis, Université de Paris VI, Paris, France, 438 pp.Google Scholar
Muggler, C.C., Loef, J.J. van, Buurman, P. & Doesburg, J.D.J. van (2001) Mineralogical and (sub)microscopic aspects of iron oxides in polygenetic Oxisols from Minas Gerais, Brazil. Geoderma, 100, 147–171.Google Scholar
Murad, E. (2006) Mössbauer spectroscopy of clays and clay minerals. Pp. 763–772 in: Handbook of Clay Science (Bergaya, F., Theng, B.K.G. & Lagaly, G., editors), Elsevier Science.Google Scholar
Murad, E. & Wagner, U. (1991) Mössbauer spectra of kaolinite, halloysite and the firing products of kaolinite: new results and a reappraisal of published work. Neues Jahrbuch für Mineralogie, Abhandlungen, 162, 281–309.Google Scholar
Nunes, W.A.G.A., Schaefer, C.E.R., Ker, J.C. & Fenandes Filho, E.I. (2000) Micropedological characterization of some soils from Zona da Mata, Minas Gerais, Brazil. Revista Brasileira de Ciência do Solo, 24, 103–115.Google Scholar
Oliveira, J.B., Resende, M. & Curi, N. (1991) Caracterização e classificação de Latossolos variação una e de solos afins da região de Guaíra, SP. Revista Brasileira de Ciência do Solo, 15, 207–218.Google Scholar
Resende, M., Curi, N., Rezende, S.B. & Corrêa, G.F. (2002) Pedologia: base para distinção de ambientes. 4th edition, NEPUT, Viçosa, Brazil, 332 pp.Google Scholar
Santos, R.D., Lemos, R.C., Santos, H.G., Ker, J.C. & Anjos, L.H.C. (2005) Manual de descrição e coleta de solo no campo, 5th edition. Sociedade Brasilera de Ciência do Solo, Viçosa, Brazil, 92 pp.Google Scholar
Schaefer, C.E.R. (2001) Brazilian latosols and their B horizon microstructure as long-term biotic constructs. Australian Journal of Soil Research, 39, 909–926.Google Scholar
Schaefer, C.E.G.R., Fabris, J.D. & Ker, J.C. (2008) Minerals in the clay fraction of Brazilian Latosols (Oxisols): a review. Clay Minerals, 43, 137–154.CrossRefGoogle Scholar
Schulze, D.G., Nagel, J.L., Van Scoyoc, G.E., Henderson, T.L., Baumgardner, M.F. & Stott, D.E. (1993) Significance of organic matter in determining soil colors. Pp.71–90 in: Soil Color (Bigham, J.M. & Ciolkosz, E.J., editors). Soil Science Society of America Special Publication 31. Soil Science Society of America, Madison, Wisconsin, USA.CrossRefGoogle Scholar
Schwertmann, U. & Taylor, R.M. (1989) Iron oxides. Pp. 379–438 in: Minerals in Soil Evironments (Dixon, J.B. & Weed, S.B., editors). Soil Science Society of America, Madison, Wisconsin, USA.Google Scholar
Soil Survey Staff (1999) Soil Taxonomy: a basic system of soil classification for making and interpreting soil surveys. United States Department of Agriculture – Natural Resources Conservation Service, Agriculture Handbook No. 436. U.S. Government Printing Office, Washington, DC. ftp://ftp-fc.sc.egov.usda.gov/NSSC/Soil_Taxonomy/tax.pdf (accessed 2 January 2011).Google Scholar
USDA (1972) Soil Survey laboratory methods and procedures for collecting soil samples. Soil Survey Investigations Report No. 1. Soil Conservation Service, U.S. Department of Agriculture, Washington, D.C.Google Scholar