Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T03:52:17.771Z Has data issue: false hasContentIssue false

The Intercalation of Polar Organic Compounds into Kaolinite

Published online by Cambridge University Press:  09 July 2018

S. Olejnik
Affiliation:
Department of Soil Science and Plant Nutrition, University of Western Australia, Nedlands, Western Australia, 6009
A. M. Posner
Affiliation:
Department of Soil Science and Plant Nutrition, University of Western Australia, Nedlands, Western Australia, 6009
J. P. Quirk
Affiliation:
Department of Soil Science and Plant Nutrition, University of Western Australia, Nedlands, Western Australia, 6009

Abstract

The intercalation of several highly polar organic compounds into kaolinite and the formation of interlamellar complexes has been examined by X-ray diffraction. Some compounds intercalate directly into kaolinite, while others can only be intercalated by the displacement of a previously intercalated compound. The formation of the complexes is strongly dependent on the properties of the organic compound, and generally a large dipole moment favours the formation of a complex. A large dipole moment may however cause extensive association in the liquid state and this decreases the rate of intercalation. The addition of water to highly associated compounds increases the rate of intercalation by breaking up the structure of the associated liquid, and the rate passes through a maximum with increasing water content. Thus the rate of intercalation is found to depend on the extent of association in the liquid or solution, the temperature and the molecular size. The d(001) spacings of the complexes are given and the orientation and packing of the intercalated molecules in relation to the Δ - values is discussed.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1970

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, R., KO, E.F.C., MAC, Y.C. & Parker, A.J. (1967) J. Am. chetn. Soc. 89, 3703.Google Scholar
Bass, S.J., Nathan, W.I., Meighan, R.M. & Cole, R.H. (1964) J. phys. chem. 68, 509.CrossRefGoogle Scholar
Bondi, A. (1964). J. phys. Chem. 68, 441.Google Scholar
Brindley, G.W. & Hoffmann, R.W. (1962) Clays Clay Miner. 9, 546.CrossRefGoogle Scholar
Camazano M., Sanchez & Garcia S., Gonzalez (1966a) Anal. Edafol. y Agrobiol. 25, 9.Google Scholar
Camazano M., Sanchez & Garcia S., Gonzalez (1966b) Studia Chemica 11, 29.Google Scholar
Chalapathi V., Venkata & Ramiah K., Venkata (1968) Proc. Ind. Acad. Sci. 68, 109.Google Scholar
Cram, D.J. & Hammond, G.S. (1959) Organic Chemistry. McGraw Hill, New York.Google Scholar
Criss, C.M. & Luksha, E. (1968) J. phys. Chem. 72, 2970.Google Scholar
Davies, M., Evans, J.C. & Jones, R.L. (1955) Trans. Faraday Soc. 51, 761.Google Scholar
Davies, M., Jones, A.H. & Thomas, G.H. (1959) Trans. Faraday Soc. 55, 1100.Google Scholar
Deeds, C.T., Van Olphen, H. & Bradley, W.F. (1966) Proc. Inter. Clay Con/. 2 : 183.Google Scholar
Garcia S., Gonzalez & Camazano M., Sanchez (1965) Anal. Edafol. y Agrobiol. 24, 495.Google Scholar
Greenland, D.J., Laby, R.H. & Quirk, J.P. (1962) Trans. Faraday Soc. 58, 829.CrossRefGoogle Scholar
Kimura, M. & Aoki, M. (1953) Bull. chem. Soc. Jap. 26, 429.Google Scholar
Kurland, R.J. & Wilson, E.B. (1957) J. chem. Phys. 27, 585.Google Scholar
Ledoux, R.L. & White, J.L. (1964) Sci. 143, 244.Google Scholar
Ledoux, R.L. & White, J.L. (1966a) J. Colloid Interface Sci. 21, 127.Google Scholar
Ledoux, R.L. & White, J.L. (1966b) Proc. Inter. Clay. Conf. 1, 361.Google Scholar
Linton, E.P. (1940) J. Am. chem. Soc. 62, 1945.CrossRefGoogle Scholar
Macewan, D.M.C. (1948) Trans. Faraday Soc. 44, 349.Google Scholar
Mclachlan, R.D. & Nyquist, R.A. (1964) Spectrochim Acta. 20, 1397.Google Scholar
Meighan, R.M. & Cole, R.H. (1964) J. phys. Chem. 68, 503.Google Scholar
Normant, H. (1967) Angew. Chem. Inter. Ed. 6, 1046.Google Scholar
Notley, J.M. & Spiro, M. (1966) J. chem. Soc. 362.Google Scholar
Ochiai, E. (1953)J. org. chem. 18, 534.CrossRefGoogle Scholar
Olejnik, S., Aylmore, L.A.G., Posner, A.M. & Quirk, J.P. (1968) J. phys. Chem. 72, 241.CrossRefGoogle Scholar
Olejnik, S., Posner, A.M. & Quirk, J.P. (1970) Spectrochim Acta. In Press.Google Scholar
Parker, A.J. (1962) Quart. Rev. 16, 163.CrossRefGoogle Scholar
Pauling, L. (1960) The Nature of the Chemical Bond 3rd Ed. Cornell Univ. Press, Ithaca, New York.Google Scholar
Schlafer, H.L. & Schaffernicht, W. (1960) Angew. Chem. 72, 618.Google Scholar
Thomas, L.H. (1960) J. chem. Soc. 4906.Google Scholar
Tsoucaris, G. (1961) Acta Crysta. 14, 914.Google Scholar
Wada, K. (1961) Am. Miner. 46, 78.Google Scholar
Wada, K. (1964) Clay Science 2, 43.Google Scholar
Wada, K. (1965) Clay Science 2, 101.Google Scholar
Weiss, A., Thjjelepape, W., Goring, G., Ritter, W. & Schaffer, H. (1963a) Inter. Clay Conf. 1, 287.Google Scholar
Weiss, A., Thielepape, W., Ritter, R., Schaffer, H. & Goring, G. (1963b) Z. anorg. u. allgem. Chem. 320, 183.CrossRefGoogle Scholar
Weiss, A., Thielepape, W. & Orth, H. (1966) Proc. Inter. Clay Conf. 1, 277.Google Scholar