Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-19T22:01:25.676Z Has data issue: false hasContentIssue false

Interactions of methomyl with montmorillonites

Published online by Cambridge University Press:  09 July 2018

L. Cox
Affiliation:
Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC Aptdo. 1052, Sevilla 41080, Spain
M. C. Hermosín
Affiliation:
Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC Aptdo. 1052, Sevilla 41080, Spain
J. Cornejo
Affiliation:
Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC Aptdo. 1052, Sevilla 41080, Spain

Abstract

The adsorption of the insecticide methomyl (S-methyl N-(methylcarbamoyloxy)thioacetimidate) by smectites with different layer charge (SWy and SAz montmorillonites and SH-Ca hectorite) has been determined. Adsorption has been expressed as the adsorbent/adsorbate distribution coefficient Kd, which increased when the layer charge of the smectite decreased. The Kd values for homoionic SWy montmorillonite samples increased when the ionic potential of the interlayer cation decreased, except for SWy-Fe3+. Infrared (IR) spectra and X-ray diffraction (XRD) analysis of the SWy-K+ and SWy-Na+ montmorillonites treated with methomyl suggest that pesticide molecules interact through polar bonds with the interlamellar cation. In the case of SWy-Fe3+, kinetic studies, high performance liquid chromatography (HPLC), IR and XRD data indicated that adsorption and degradation both account for the high Kd value obtained.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aly, M.I., Bakky, N., Kirshk, F. & El Sebae, A.H. (1980) Carbaryl adsorption on Ca-bentonite and soils. Soil Sci. Soc. Am. J. 44, 12131215.CrossRefGoogle Scholar
Aochi, Y. & Farmer, W.J. (1988) Spectroscopicevidence for a copper-picloram complex on Cu(II)-saturated and Cu(II)-hydrous oxide coated montmorillomite. Soil Sci. Soc. Am. J. 52, 12651270.CrossRefGoogle Scholar
Bailey, G.W. & White, J.L. (1970). Factors influencing the adsorption, desorption and movement of pesticides in soils. Residue Review, 32, 2992.Google Scholar
Bellamy, L.J. (1980) The Infrared Spectra of Complex Molecules (Vol. I). Chapman & Hall, London & New York.CrossRefGoogle Scholar
Bosetto, M., Arfaioli, P. & Fusi, P. (1993) Interactions of alachlor with homoionic montmorillonites. Soil Sci. 155, 105113.CrossRefGoogle Scholar
Bromilow, R.H., Briggs, G.G., Williams, M.R., Smelt, J.H., Tuinstra, L.G.M. & Traag, W.A. (1986) The role of ferrous iron in the rapid degradation of oxamyl, methomyl and aldicarb in anaerobic subsoils. Pestic. Sci. 17, 535547.CrossRefGoogle Scholar
Calvet, R. (1989) Adsorption of organic chemicals in soils. Environ. Health Perspectives, 83, 145177.CrossRefGoogle ScholarPubMed
Cornejo, J., Hermosin, M.C, White, J.L., Barnes, J.R. & Hem, S.L. (1983) Role of the ferric iron in oxidation of hydrocortisone by sepiolite and palygorskite. Clays Clay Miner. 31, 109112.CrossRefGoogle Scholar
Cox, L., Hermosin, M.C. & Cornejo, J. (1992) Distribution coefficient of methomyl in soils from different depths. Fresenius Environ. Bull. 1, 445449.Google Scholar
Cox, L., Hermosin, M.C. & Cornejo, J. (1993) Adsorption of methomyl by soils of southern Spain and soil components. Chemosphere, 27, 837849.CrossRefGoogle Scholar
Fusi, P., Ristori, G.G. & Franci, M. (1982) Adsorption and catalytic decomposition of 4-nitrobenzenesulphonylmethylcarbamate by smectite. Clays Clay Miner. 30, 306310.CrossRefGoogle Scholar
Fusi, P. Franci, M. & Ristori, G.G. (1989) Adsorption of methyl carbamate by montmorillonite. Appl. Clay Sci. 4, 403–109.CrossRefGoogle Scholar
Harvey, J. JR. & Pease, H.L. (1973) Decomposition of methomyl in soils. J. Agr. Food Chem. 21(5), 784786.CrossRefGoogle Scholar
Hermosi'N, M.C, Roldan, I. & Cornejo, J. (1991) Adsorption-desorption of maleic hydrazide on mineral soil components. J. Environ. Sci. Health B26(2), 165183.CrossRefGoogle Scholar
Hermosi'N, M.C, Roldan, I. & Cornejo, J. (1992) Binding mechanisms of maleic hydrazide to homoionic montmorillonites. Sci. Total Environment 123/124, 109119.CrossRefGoogle Scholar
Jaynes, W.F. & Boyd, S.A. (1991) Clay mineral type and organic compound sorption by hexadecyltrimethylammonium-exchanged clays. Soil Sci. Soc. Am. J. 55, 43-18.CrossRefGoogle Scholar
Jones, R.L., Hunt, T.W., Norris, S.A. & CF. HARDEN (1989) Field research studies on the movement and degradation of thiodicarb and its metabolite methomyl. J. Contaminant Hydrol. 4, 359371.CrossRefGoogle Scholar
Khan, S.U. (1972) Adsorption of pesticides by humic substances: A review. Environ. Lett. 3, 112.CrossRefGoogle ScholarPubMed
Mcconnell, J.S. & Hossner, L.R. (1989) X-ray diffraction and infrared spectroscopic studies of adsorbed glyphosate. J. Agric. Food Chem. 37, 555560.CrossRefGoogle Scholar
Mortland, M.M. (1970). Clay organic complexes and interactions. Adv. Agron. 22, 75117.CrossRefGoogle Scholar
Osgerby, J.M. (1970) Sorption of un-ionised pesticides by soils. Pp. 63-78 in: Sorption and Transport Processes in Soils. SCI Monograph 37.Google Scholar
Pusino, A., Gessa, C. & Kozlowski, H. (1988) Catalytic hydrolysis of quinalphos on homoionic clays. Pestic. Sci. 24, 18.CrossRefGoogle Scholar
Rao, P.S.C. (1990) Sorption of organic contaminants. Wat. Sci. Tech. 22, 116.CrossRefGoogle Scholar
Sánchez-camazano, M. & Sánchez-Martín, M.J. (1991) Hydrolysis of azinphosmethyl induced by the surface of smectites. Clays Clay Miner. 39, 609613.CrossRefGoogle Scholar
Sánchez-Martín, M.J. & Sánchez-Camazano, M. (1987) Adsorption of cloridazon by montmorillonite. Chemosphere, 16, 937944.CrossRefGoogle Scholar
Sánchez-Martín, M.J., Jiménez-Plaza, J. & Sánchez-Camazano, M. (1984) Adsorcion de molinato por smectitas. Agrochimica, 28, 353359.Google Scholar
Sposito, G. (1984) The reactive solid surfaces. Pp. 1-46 in: The Surface Chemistry of Soils. Oxford University Press, New York.Google Scholar
Tahoun, S.A. & Mortland, M.M. (1966a) Complexes of montmorillonite with primary, secondary and tertiary amides: 1 Protonation of amides on the surface of montmorillonite. Soil Sci. 102, 248254.CrossRefGoogle Scholar
Tahoun, S.A. & Mortland, M.M. (1966b) Complexes of montmorillonite with primary, secondary and tertiary amides: II. Coordination of amides on the surface of montmorillonite. Soil Sci. 102, 314321.CrossRefGoogle Scholar
Theng, B.K.J. (1974) The Chemistry of Clay-Organic Reactions, pp. 26-281. Wiley, New York.Google Scholar
Van Olphen, H. & Fripiat, J. (1979) Data Handbook for Clay Materials and other Non-Metallic Minerals. Pergamon Press, Oxford.Google Scholar
White, J.L. (1976) Clay-Pesticide Interactions. Pp. 208-218 in: Bound and Conjugate Pesticide Residues. (Kaufman, D.D. et al., editors) ACS Symp. Series No. 29, American Chemical Society, New York.Google Scholar
Worthing, C.R. & Hance, R.J. (1991) The Pesticide Manual. BCPC, Surrey, UK.Google Scholar