Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-20T03:35:01.174Z Has data issue: false hasContentIssue false

Infrared evidence for the occurrence of SiO groups with double-bond character in antigorite, sepiolite and palygorskite

Published online by Cambridge University Press:  09 July 2018

S. Yariv*
Affiliation:
Department of Inorganic and Analytical Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel

Abstract

IR spectra of antigorite and sepiolite show an absorption band at ∼ 1200 cm−1. Spectra of palygorskite show several small absorptions between 1140–1200 cm−1. Since these three minerals are the only layer-silicates which show this absorption this band was assigned to Si-O-Si groups which serve as bridges between alternating alumino-Mg-silicate ribbons. By comparing the location of this band to bands observed in the spectra of P=O groups it was concluded that the contribution of π bonding in the bridging Si-O-Si group is of a high order. Similar conclusions were drawn after comparing the spectra of antigorite, sepiolite and palygorskite with those of various pyrosilicates. An inversion of the tetrahedral sheet requires an Si-O-Si angle of 180° which can be stabilized by dπ-pπ bonding in the Si-O-Si group. Due to the inductive effect of the octahedral sheet this type of bonding may occur in trioctahedral clay silicates, but is not to be expected in dioctahedral clay silicates.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bhattacherjee, S. & Lokanathan, S. (1984) Dehydration transformation in palygorskite. Trans. Indian Ceramic Soc. 43, 149154.Google Scholar
Brindley, G.W. & Zussman, J. (1959) Infrared absorption data for serpentine minerals. Am. Miner. 44, 185 188.Google Scholar
Cruickshank, D.W.J. (1961) The role of 3d-orbitals in π bonds between (a) silicon, phosphorus, sulphur or chlorine and (b) oxygen or nitrogen. J. Chem. Soc. 54865504.Google Scholar
Cruickshank, D.W.J., Linton, H. & Barclay, G.A. (1962) A reinvestigation of the crystal structure of thortveitite Sc2Si2O7 . Acta Crystallogr. 15, 491498.CrossRefGoogle Scholar
Denning, J.H., Hudson, R.F., Laughlin, D.R., Ross, S.D. & Sparasci, A.M. (1972) The vibrational spectra of some rare-earth pyrosilicates. Spectrochim. Acta 28A, 17871791.CrossRefGoogle Scholar
Farmer, V.C. (1974) Orthosilicates, pyrosilicates and other finite-chain silicates and The layer silicates. Pp. 285303 and 331363 in: The Infrared Spectra of Minerals (Farmer, V. C., editor). The Mineralogical Society, London.CrossRefGoogle Scholar
Heller-Kallai, L. & Rozenson, I. (1981) Moessbauer studies of palygorskite and some aspects of palygorskite mineralogy. Clays Clay Miner. 29, 226232.Google Scholar
Hirsiger, W.M., Mueller-Vonmoos, M. & Wiedemann, H. (1975) Thermal analysis of palygorskite. Thermochim. Acta 13, 223230.Google Scholar
Katzin, L.I., Mason, G.W. & Peppard, D.F. (1978) Infrared spectral observation on the PO group vibration of some homogeneous series of organic derivatives of P(V). Spectrochim. Acta 34A, 5761.CrossRefGoogle Scholar
Kunze, G. (1961) Antigorit: Strukturthearetische Grundlagen und ihre praktische Bedeutung fuer die weitere Serpentin-Forschung. Fortsch. Miner. 39, 206324.Google Scholar
Lazarev, A.N. (1960) Vibration spectra of silicates. I. Infrared spectra of silicates with anions of type Si2O7 6- . Optics Spectros. 9, 103106.(in Russian).Google Scholar
Lazarev, A.N. (1972) Vibrational Spectra and Structure of Silicates. Plenum, New York.Google Scholar
Lazarev, A.N. (1974) The dynamics of crystal lattices. Pp. 6985 in: The Infrared Spectra of Minerals (Farmer, V. C., editor). The Mineralogical Society, London.CrossRefGoogle Scholar
Luce, R.W. (1971) Identification of serpentine varieties by infrared absorption. U.S. Geol. Survey Prof Paper 750B, B199B201.Google Scholar
Mendelovici, E. (1973) Infrared study of attapulgite and HC1 treated attapulgite. Clays Clay Miner. 21,115119.CrossRefGoogle Scholar
Mendelovici, E. & Carroz Portillo, D. (1976) Organic derivatives of attapulgite. I. Infrared spectroscopy and X-ray diffraction studies. Clays Clay Miner. 24, 177182.Google Scholar
Nakamoto, K. (1963) lnfrared Spectra of Inorganic and Coordination Compounds. J. Wiley & Sons, New York.Google Scholar
Nathan, Y. (1969) Dehydration of palygorskites and sepiolites. Proc. Int. Clay Conf., Tokyo 1, 9197.Google Scholar
Oinuma, K. & Hayashi, H.(1968) Infrared spectra of clay minerals. J. Toyo Univ. General Education (Nat. Sci.), 9 5798.Google Scholar
Otsuka, R., Hayashi, H. & Shimoda, S (1968) Infrared absorption spectra of sepiolite and palygorskite. Memoirs of the School of Sci. and Engin., Waseda Univ. 32, 1324.Google Scholar
Prost, R. (1973) Spectra infrarouge de l'eau presente dans l'attapulgite et la sepiolite. Bull. Groupe franc. Argiles 25, 5363.Google Scholar
Prost, R. (1975) Infrared study of the interactions between the different kind of water molecules present in sepiolite. Spectrochim. Acta 31A, 14971499.CrossRefGoogle Scholar
Serna, C.J. (1973) PhD Thesis, Section de Quimicas, Facultad de Ciencias, Universidad de Madrid, Spain.Google Scholar
Serna, C.J., Rauvureau, M., Prosr, R., Tchoubar, C. & Serraxosa, J.M. (1975) Etude de la sepiolite a l'aide des donnees de la microscopic electronique, de l'analyse thermoponderale et de la spectroscopic infrarouge. Bull. Groupe franc. Argiles 26, 153163.Google Scholar
Tarte, P., Pottier, M.J. & Proces, A.M. (1973) Vibrational studies of silicates and germanates-—V. IR and Raman spectra of pyrosilicates and pyrogermanates with a linear bridge. Spectrochim. Acta 29A, 1017 1027.CrossRefGoogle Scholar
VanScoyoc, G.E. (1976) PhD Thesis, Purdue University, Lafayette, Ind., USA.Google Scholar
VanScoyoc, G.E., Serna, C.J. & Ahldrich, J.L. (1979) Structural changes in palygorskite during dehydration and dehydroxylation. Am. Miner. 64, 215223.Google Scholar
Withnall, R. & Andrews, L. (1985) Infrared spectroscopic evidence for silicon-oxygen double bonds: silanone and the silanoic and silicic acid molecules. J. Am. Chem. Soc. 107, 25672568.Google Scholar
Yariv, S. & Cross, H. (1979) Geochemistry of Colloid Systems, pp. 79. Springer Verlag, Berlin.Google Scholar
Yariv, S. & Heller-Kallai, L. (1975) The relationship between the IR spectra of serpentines and their structures. Clays Clay Miner. 23, 145152.Google Scholar
Yariv, S. & Heller-Kallai, L. (1984) Thermal treatment of sepiolite and palygorskite-stearic acid associations. Chem. Geol. 45, 313327.CrossRefGoogle Scholar
Zelazny, L.W. & Calhoun, F.G. (1977) Palygorskite (attapulgite), sepiolite, talc, pyrophyllite and zeolites. Pp. 435470 in: Minerals in Soil Environments (Dixon, E., editor). Soil Science Society of America, Inc., Madison, Wisconsin.Google Scholar