Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-23T15:38:26.401Z Has data issue: false hasContentIssue false

Influence of zirconia on the sintering behaviour and mechanical properties of reaction-sintered mullite-based composite ceramics

Published online by Cambridge University Press:  06 October 2022

Zhenying Liu*
Affiliation:
School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, Anhui, China State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan 232001, Anhui, China Anhui International Joint Research Center for Nano Carbon-based Materials and Environmental Health, Anhui University of Science and Technology, Huainan 232001, Anhui, China
Nan Xie
Affiliation:
School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, Anhui, China
Shouwu Huang
Affiliation:
School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, Anhui, China
Hanxin Zhang
Affiliation:
School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, Anhui, China
Chongmei Wu
Affiliation:
School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, Anhui, China
Kai Cui
Affiliation:
School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, Anhui, China
Yin Liu
Affiliation:
School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, Anhui, China State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan 232001, Anhui, China Anhui International Joint Research Center for Nano Carbon-based Materials and Environmental Health, Anhui University of Science and Technology, Huainan 232001, Anhui, China
Hongzheng Zhu
Affiliation:
School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, Anhui, China
Jinbo Zhu
Affiliation:
School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, Anhui, China State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan 232001, Anhui, China
Changguo Xue
Affiliation:
School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, Anhui, China

Abstract

High-performance mullite-based composite ceramics were prepared successfully using natural kaolin and alumina as raw materials and ZrO2 as an additive. The influence of sintering temperature and ZrO2 content on the sintering behaviour and mechanical properties of zirconia-toughened mullite ceramics was studied systematically. With increasing sintering temperature from 1450°C to 1560°C, the primary phases of as-sintered composite ceramics were mullite and corundum with a small amount of ZrO2, and the bulk density of the composite ceramics increased from 2.29 to 2.72 g cm–3. Furthermore, the ZrO2 phase transition promoted transgranular fracture, and ZrO2 grains were pinned at the grain boundaries, thereby enhancing the mechanical strength of the composite ceramics. Moreover, the AZS12 sample, with 12 wt.% ZrO2 and sintered at 1560°C, had the greatest flexural strength and fracture toughness of 91.6 MPa and 2.47 MPa m–1/2, respectively. Adding ZrO2 to the composite ceramics increased their flexural strength by ~37.6%.

Type
Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: M. Dondi

References

Alves, H.P.A., Silva, J.B., Campos, L.F.A., Torres, S.M., Dutra, R.P.S. & Macedo, D.A. (2016) Preparation of mullite based ceramics from clay–kaolin waste mixtures. Ceramics International, 42, 1908619090.CrossRefGoogle Scholar
Aswad, M.A., Alfatlawi, S.H.A. & Saud, A.N. (2021) Thermal decomposition and reaction sintering for synthesis of mullite–zirconia composite using kaolin, γ-alumina and zirconia. Cerâmica, 67, 3238.10.1590/0366-69132021673812991CrossRefGoogle Scholar
Behera, P.S. & Bhattacharyya, S. (2020) Sintering and microstructural study of mullite prepared from kaolinite and reactive alumina: effect of MgO and TiO2. International Journal of Applied Ceramic Technology, 18, 8190.10.1111/ijac.13637CrossRefGoogle Scholar
Bella, M.L., Hamidouche, M. & Gremillard, L. (2021) Preparation of mullite–alumina composite by reaction sintering between Algerian kaolin and amorphous aluminum hydroxide. Ceramics International, 47, 1620816220.CrossRefGoogle Scholar
Cui, K., Zhang, Y., Fu, T., Wang, J. & Zhang, X. (2020) Toughening mechanism of mullite matrix composites: a review. Coatings, 10, 672.10.3390/coatings10070672CrossRefGoogle Scholar
Deng, L., Fu, Z., Mingxing, Z., Li, H., Yao, B., He, J. et al. (2022) Crystallization, structure, and properties of TiO2–ZrO2 co-doped MgO–B2O3–Al2O3–SiO2 glass–ceramics. Journal of Non-Crystalline Solids, 575, 121217.10.1016/j.jnoncrysol.2021.121217CrossRefGoogle Scholar
Feng, M., Wu, Y.-q., Ji, G.-r., Zhou, Y., Wang, X.-j., Hao, J.-y. et al. (2022) Sintering mechanism and properties of corundum–mullite duplex ceramic with MnO2 addition. Ceramics International, 48, 1423714245.10.1016/j.ceramint.2022.01.312CrossRefGoogle Scholar
Ji, H., Fang, M. & Huang, Z. (2013) Effect of La2O3 additives on the strength and microstructure of mullite ceramics obtained from coal gangue and γ-Al2O3. Ceramics International, 39, 68416846.CrossRefGoogle Scholar
Jing, Y., Deng, X., Li, J., Bai, C. & Jiang, W. (2014) Fabrication and properties of SiC/mullite composite porous ceramics. Ceramics International, 40, 13291334.10.1016/j.ceramint.2013.07.013CrossRefGoogle Scholar
Koyama, T., Hayashi, S. & Yasumori, A. (1994) Preparation and characterization of mullite–zirconia composites from various starting materials. Journal of the European Ceramic Society, 14, 295302.10.1016/0955-2219(94)90066-3CrossRefGoogle Scholar
Koyama, T., Hayashi, S. & Yasumori, A. (1996) Microstructure. and mechanical properties of mullite/zirconia composites prepared from alumina and zircon under various firing conditions. Journal of the European Ceramic Society, 16, 231237.10.1016/0955-2219(95)00142-5CrossRefGoogle Scholar
Kwon, S.Y. & Jung, I.-H. (2022) Thermodynamic assessment of the Al2O3–ZrO2, CaO–Al2O3–ZrO2, and Al2O3–SiO2–ZrO2 systems. Ceramics International, 48, 54135427.10.1016/j.ceramint.2021.11.085CrossRefGoogle Scholar
Li, G., Ma, H., Tian, Y., Wang, K., Zhou, Y., Wu, Y. et al. (2017) Feasible recycling of industrial waste coal gangue for preparation of mullite based ceramic proppant. IOP Conference Series: Materials Science and Engineering, 230, 012020.10.1088/1757-899X/230/1/012020CrossRefGoogle Scholar
Li, K., Ge, S., Yuan, G., Zhang, H., Zhang, J., He, J. et al. (2021) Effects of V2O5 addition on the synthesis of columnar self-reinforced mullite porous ceramics. Ceramics International, 47, 1124011248.CrossRefGoogle Scholar
Lian, W., Liu, Y., Wang, W., Dong, Y., Wang, S., Zhu, R. et al. (2021a) Effects of flake-shape and content of nano-mullite on mechanical properties and fracture process of corundum composite ceramics. Journal of Asian Ceramic Societies, 9, 459470.10.1080/21870764.2021.1891663CrossRefGoogle Scholar
Lian, W., Liu, Z., Zhu, R., Wang, W., Liu, Y., Wang, S. et al. (2021b) Effects of zirconium source and content on zirconia crystal form, microstructure and mechanical properties of ZTM ceramics. Ceramics International, 17, 10261032.Google Scholar
Liu, Y., Lian, W., Su, W., Luo, J. & Wang, L. (2019) Synthesis and mechanical properties of mullite ceramics with coal gangue and wastes refractory as raw materials. International Journal of Applied Ceramic Technology, 17, 205210.10.1111/ijac.13391CrossRefGoogle Scholar
Ma, B.-y., Li, Y., Cui, S.-g. & Zhai, Y.-c. (2010) Preparation and sintering properties of zirconia–mullite–corundum composites using fly ash and zircon. Transactions of Nonferrous Metals Society of China, 20, 23312335.10.1016/S1003-6326(10)60650-4CrossRefGoogle Scholar
Mahmood, A.A., Gafur, M.A. & Hoque, M.E. (2017) Effect of MgO on the physical, mechanical and microstructural properties of ZTA–TiO2 composites. Materials Science and Engineering: A, 707, 118124.10.1016/j.msea.2017.09.048CrossRefGoogle Scholar
Mazzei, A.C. & Rodrigues, J.A. (2000) Alumina–mullite–zirconia composites obtained by reaction sintering. Journal of Materials Science, 35, 28072814.10.1023/A:1004743001686CrossRefGoogle Scholar
Miranzo, P., Pena, P., Moya, J.S. & Deaza, S. (1985) Multicomponent toughened ceramic materials obtained by reaction sintering. Journal of Materials Science, 20, 27022710.10.1007/BF00553031CrossRefGoogle Scholar
Mojumdar, S., Prasad, R. & Sun, L. (2009) An introduction to thermodynamic modeling, thermal analysis and calorimetry. Research Journal of Chemistry and Environment, 13, 86103.Google Scholar
Peng, L. & Qin, S. (2019) Sintering behavior and technological properties of low-temperature porcelain tiles prepared using a lithium ore and silica crucible waste. Minerals, 9, 731.10.3390/min9120731CrossRefGoogle Scholar
Prochazka, S., Wallace, J.S. & Glausen, N. (1983) Microstructure of sintered mullite–zirconia composites. Journal of the American Ceramic Society, 66, 125127.Google Scholar
Ptáček, P., Frajkorová, F., Šoukal, F. & Opravil, T. (2014) Kinetics and mechanism of three stages of thermal transformation of kaolinite to metakaolinite. Powder Technology, 264, 439445.10.1016/j.powtec.2014.05.047CrossRefGoogle Scholar
Qian, T., Zeng, Y., Xiong, X., Ye, Z., Lun, H., Hu, J. et al. (2020) Corrosion behavior of Y2O3-doped mullite–ZrSiO4 coatings applied on C/C–SiC composites in the presence of moisture at temperatures of 1373–1773 K. Ceramics International, 46, 1286112869.10.1016/j.ceramint.2020.01.124CrossRefGoogle Scholar
Qin, M., Tian, Y.M., Hao, H.L., Li, G.M., Zhou, Y. & Bai, P.B. (2020) Effects of CaCO3 additive on properties and microstructure of corundum- and mullite-based ceramic proppants. International Journal of Applied Ceramic Technology, 17, 10261032.10.1111/ijac.13470CrossRefGoogle Scholar
Romero, M., Padilla, I., Contreras, M. & López-Delgado, A. (2021) Mullite-based ceramics from mining waste: a review. Minerals – Basel, 11, 332.Google Scholar
Sahnoune, F., Belhouchet, H., Saheb, N., Heraiz, M., Chegaar, M. & Goeuriot, P. (2013) Phase transformation and sintering behaviour of mullite and mullite–zirconia composite materials. Advances in Applied Ceramics, 110, 175180.10.1179/1743676111Y.0000000004CrossRefGoogle Scholar
Sainz, M.A., Serrano, F.J. & Amigo, J.M. (2000) XRD microstructural analysis of mullites obtained from kaolinite–alumina mixtures. Journal of the European Ceramic Society, 20, 403412.10.1016/S0955-2219(99)00183-1CrossRefGoogle Scholar
Sarker, S., Mumu, H.T., Al-Amin, M., Zahangir Alam, M. & Gafur, M.A. (2022) Impacts of inclusion of additives on physical, microstructural, and mechanical properties of alumina and zirconia toughened alumina (ZTA) ceramic composite: a review. Materials Today: Proceedings, 62, 28922918.Google Scholar
Schneider, H., Schreuer, J. & Hildmann, B. (2008) Structure and properties of mullite – a review. Journal of the European Ceramic Society, 28, 329344.10.1016/j.jeurceramsoc.2007.03.017CrossRefGoogle Scholar
Serragdj, I., Harabi, A., Kasrani, S., Foughali, L. & Karboua, N. (2018) Effect of ZrO2 additions on densification and mechanical properties of modified resistant porcelains using economic raw materials. Journal of the Australian Ceramic Society, 55, 489499.10.1007/s41779-018-0255-7CrossRefGoogle Scholar
Sistani, P.B., Kiani-Rashid, A. & Beidokhti, S.M. (2019) Microstructural and diametral tensile strength evaluation of the zirconia–mullite composite. Ceramics International, 45, 71277136.10.1016/j.ceramint.2018.12.218CrossRefGoogle Scholar
Song, Y., Zhu, D., Liang, J. & Zhang, X. (2018) Enhanced mechanical properties of 3 mol% Y2O3 stabilized tetragonal ZrO2 incorporating tourmaline particles. Ceramics International, 44, 1555015556.10.1016/j.ceramint.2018.05.217CrossRefGoogle Scholar
Vyazovkin, S., Burnham, A.K., Criado, J.M., Pérez-Maqueda, L.A., Popescu, C. & Sbirrazzuoli, N. (2011) ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochimica Acta, 520, 119.10.1016/j.tca.2011.03.034CrossRefGoogle Scholar
Weinberg, A.V., Goeuriot, D., Poirier, J., Varona, C. & Chaucherie, X. (2021) Mullite–zirconia composite for the bonding phase of refractory bricks in hazardous waste incineration rotary kiln. Journal of the European Ceramic Society, 41, 9951002.CrossRefGoogle Scholar
Wu, J., Ding, C., Xu, X. & Chen, L. (2021a) Preparation and thermal stability investigation of Al2O3–mullite–ZrO2–SiC composite ceramics for solar thermal transmission pipelines. Ceramics International, 47, 1067210678.10.1016/j.ceramint.2020.12.181CrossRefGoogle Scholar
Wu, J., Ding, C., Xu, X., Liu, Y. & Wang, Y. (2021b) Microstructure and performances of corundum–mullite composite ceramics for heat transmission pipelines: effects of Ho2O3 additive content. Ceramics International, 47, 3479434801.CrossRefGoogle Scholar
Wu, J., Ding, C., Xu, X., Zhou, S., Zhou, Y. & Zhang, Q. (2021c) Microstructure and performances of Gd2O3-added corundum–mullite ceramic composites for concentrated solar power applications. Ceramics International, 47, 1717717185.10.1016/j.ceramint.2021.03.028CrossRefGoogle Scholar
Wu, J., Hu, C., Xu, X., Ma, X. & Zhang, Y. (2016) Preparation and performance study of mullite/Al2O3 composite ceramics for solar thermal transmission pipeline. International Journal of Applied Ceramic Technology, 13, 10171023.10.1111/ijac.12584CrossRefGoogle Scholar
Yuan, Q.-M., Tan, J.-Q. & Jin, Z.-G. (1986) Preparation and properties of zirconia-toughened mullite ceramics. Journal of the American Ceramic Society, 69, 265267.CrossRefGoogle Scholar
Yuan, W., Kuang, J., Huang, Z. & Yu, M. (2022) Effect of aluminum source on the kinetics and mechanism of mullite preparation from kaolinite. Chemical Physics Letters, 787, 139242139248.CrossRefGoogle Scholar
Yu, H., Chen, Y., Guo, X., Luo, L., Li, J., Li, W. et al. (2018) Study on mechanical properties of hot pressing sintered mullite–ZrO2 composites with finite element method. Ceramics International, 44, 75097514.10.1016/j.ceramint.2018.01.146CrossRefGoogle Scholar
Zhang, B., Ma, J., Ye, J., Jin, Y., Yang, C., Ding, J. et al. (2019) Ultra-low cost porous mullite ceramics with excellent dielectric properties and low thermal conductivity fabricated from kaolin for radome applications. Ceramics International, 45, 1886518870.10.1016/j.ceramint.2019.06.120CrossRefGoogle Scholar
Supplementary material: File

Liu et al. supplementary material

Liu et al. supplementary material

Download Liu et al. supplementary material(File)
File 344.5 KB