Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-26T03:07:57.911Z Has data issue: false hasContentIssue false

Hydromechanical effects: (I) on the Na-smectite microtexture

Published online by Cambridge University Press:  09 July 2018

J . -F. Alcover
Affiliation:
CNRS, Université d'Orléans, Centre de Recherche sur la Matière Divisée, 1B, Rue de la Férollerie, 45071 Orleans, Cedex 2, France
Y. Qi
Affiliation:
CNRS, Université d'Orléans, Centre de Recherche sur la Matière Divisée, 1B, Rue de la Férollerie, 45071 Orleans, Cedex 2, France
M. Al-mukhtar
Affiliation:
CNRS, Université d'Orléans, Centre de Recherche sur la Matière Divisée, 1B, Rue de la Férollerie, 45071 Orleans, Cedex 2, France
S. Bonnamy
Affiliation:
CNRS, Université d'Orléans, Centre de Recherche sur la Matière Divisée, 1B, Rue de la Férollerie, 45071 Orleans, Cedex 2, France
F. Bergaya*
Affiliation:
CNRS, Université d'Orléans, Centre de Recherche sur la Matière Divisée, 1B, Rue de la Férollerie, 45071 Orleans, Cedex 2, France
*

Abstract

Changes in particle organization and pore-spaces with applied mechanical and hydraulic stresses were followed using TEM, SAXS mercury porosimetry and gas adsorption for two Na-smectites, Laponite and hectorite, with similar structural formulae but different particle sizes. The TEM images show that hectorite has particles larger and more anisotropic than those of Laponite. The particles order perpendicularly to the direction of axial mechanical stress and become disoriented under hydraulic stress. According to the SAXS results, Laponite is composed of 1 – 3 small layers and hectorite of more compact (10 – 80 layers) particles. In Laponite, mechanical stress strongly reduces the amount of macropores but does not affect micropores and mesopores; hydraulic stress increases the macropores. In hectorite, the pore-volume is lower than in Laponite. The different techniques used yield complementary results and show the considerable effect of layer dimension on the behaviour and microtexture parameters of smectite submitted to hydromechanical stresses.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al-Mukhtar, M. (1995) Macroscopic behaviour and microstructural properties of a kaolinite clay under controlled mechanical and hydraulic state. Proc. 1st Int. Conf. Unsaturated Soils, Paris, 1, 3 – 11.Google Scholar
Al-Mukhtar, M., Belanteur, N., Tessier, D. & Vanapalli, S. K. (1996) The fabric of a clay soil under controlled mechanical and hydraulic stress states. Appl. Clay Sci. 11, 99– 115.Google Scholar
Al-Mukhtar, M., Touray, J.C. & Bergaya, F. (1999) Une argile modèle pour l’étude du comportement rhéologique des sols argileux: la Laponite-Na de synthèse. C.R. Acad. Sci. Paris, 329, 239 – 242.Google Scholar
Annabi-Bergaya, F., Estrade-Swarckopf, H. & Van Damme, H. (1996) Dehydration of Cu-hectorite: Water isotherm, XRD and EPR studies. J. Phys. Chem. 100, 4120 – 4126.Google Scholar
Belanteur, N. (1995) Contribution à l’étude des comportements mécanique et thermomécanique des argiles remaniées, saturées et fortement consolidées. Thesis, Univ. d’Orléans, France.Google Scholar
Ben Rhaiem, H., Tessier, D. & Pons, C.H. (1986) Comportement hydrique et évolution structurale et texturale des montmorillonites au cours d’un cycle de dessication-humectation. Partie I: cas des montmorillonites calciques. Clay Miner. 21, 9 – 19.Google Scholar
Ben Rhaiem, H., Pons, C.H. & Tessier, D. (1987) Factors affecting the microstructure of smectites: Role of cation and history of applied stresses. Proc. Int. Clay Conf., Denver, 292 – 297.Google Scholar
Chandler, N., Dixon, D., Gray, M., Hara, K., Cournut, A. & Tillerson, J. (1998) The tunnel sealing experiment: an in situ demonstration of technologies for vault sealing. Proc. 19th Ann. Conf. Canad. Nuclear Soc., Toronto, Canada, 1, 1– 15.Google Scholar
Coulon, H., Lajudi, A., Debrabant, P., Atabec, R., Jorda, M., André-Jehan, A. (1987) Choice of French clays as engineered barrier components for waste disposal. Mat. Resource Proc. Symp. 84, 813 – 824.Google Scholar
Elsass, F., Beaumont, A., Pernes, M., Jaunet, A.M. & Tessier, D. (1998) Changes in layer organization of Na- and Ca-exchanged smectite materials during solvent exchanges for embedment in resin. Canad. Miner. 36, 1475 – 1483.Google Scholar
Faisandier, K., Pons, C.H., Tchoubar, D. & Thomas, F. (1998) Structural organization of Na- and Kmontmorillonite suspensions in response to osmotic and thermal stresses. Clays Clay Miner. 46, 636 – 648.Google Scholar
Fripiat, J., Cases, J., Francois, M. & Letellier, M. (1982) Thermodynamic and microdynamic behavior of water in clay suspensions and gels. J. Coll. Interf. Sci. 89-2, 378 – 400.Google Scholar
Mering, J. (1949) L’interférence des rayons X dans les systèmes à strati fication désordonn ée. Acta Crystallogr. 2, 371 – 377.Google Scholar
Morvan, M., Espinat, D., Lambard, J. & Zemb, T.H. (1994) Ultrasmall- and small-angle X-ray scattering of smectite clay suspensions. Coll. Surf. 82, 193 – 203.Google Scholar
Mourchid, A., Delville, A., Lambard, J., Lécolier, E. & Levitz, P. (1995) Phase diagram of colloidal dispersions of anisotropic charged particles: Equilibrium properties, structure, and rheology of Laponite suspensions. Langmuir, 11, 6, 1942 – 1950.Google Scholar
Ouzounian, G. (1999) Déchets radioactifs à haute activité et à vie longue: les recherches en laboratoire souterrain. Bull. SFP, 120, 4– 9.Google Scholar
Pons, C.H. (1980) Mise en évidence des relations entre la texture et la structure dans les systèmes eausmectites par diffusion aux petits angles du rayonnement synchrotron. Thesis, Univ. d’Orléans, France.Google Scholar
Pons, C.H., Rousseaux, F. & Tchoubar, D. (1981) Utilisation du rayonnement synchrotron en diffusion aux petits angles pour l’étude du gonflement des smectites. I: Etude du système eau-montmorillonite Na en fonction de la température. Clay Miner. 16, 23 – 42.Google Scholar
Pons, C.H., Rousseaux, F. & Tchoubar, D. (1982) Utilisation du rayonnement synchrotron en diffusion aux petits angles pour l’étude du gonflement des smectites: II. Etude de différents systèmes eausmectites en fonction de la température. Clay Miner. 17, 327 – 338.Google Scholar
Pusch, R. (1982) Mineral-water interactions and their influence on the physical behaviour of highly compacted Na bentonite. Can. Geotech. J. 19, 381 – 387.Google Scholar
Pusch, R. & Carlsson, T. (1985) The physical state of pore water of Na-smectite used as barrier component. Eng. Geol. J. 21, 257 – 265.Google Scholar
Qi, Y. (1996) Comportement hydro-mécanique des argiles: couplage des propriétés micro-macroscopiques de la Laponite et de l’hectorite.Thesis, Univ. d’Orléans, France.Google Scholar
Qi, Y., Al-Mukhtar, M., Alcover, J.-F. & Bergaya, F. (1996) Coupling analysis of macroscopic behaviour in highly consolitated Na-Laponite clays. Appl. Clay Sci. 11, 185 – 197.Google Scholar
Rouquerol, F., Rouquerol, J. & Sing, K. (1999) Assesment of microporosity. Pp. 219 – 236 in: Adsorption by Powders and Porous Solids. Academic Press, London.Google Scholar
Tchoubar, D., Rousseau, F., Pons, C.H. & Lemmonier, M. (1978) Small-angle setting at LURE: Description and results. Nucl. Inst. Meth. 152, 301 – 305.Google Scholar
Tessier, D. (1984). Etude expérimentale de l’organisation des matériaux argileux, hydration, gonflement et structuration au cours de la dessiccation et de la réhumectation. Thesis, Doc. ès Sci., Univ. Paris VII, INRA Versailles, France.Google Scholar
Tessier, D., Lajudie, A. & Petit, J.C. (1992) Relation between the macroscopic behaviour of clays and their microstructural properties. Appl. Geochem. 1, 151 – 161.Google Scholar
Tessier, D., Dardaine, M., Beaumont, A. & Jaunet, A.M. (1998) Swelling pressure and microstructure of an activated swelling clay with temperature. Clay Miner. 33, 225 – 267.Google Scholar
Touret, Q., Pons, C.H., Tessier, D. & Tardy, Y. (1990) Etude de la répartition de l’eau dans des argiles saturées Mg2+ aux fortes teneurs en eau. Clay Miner. 25, 217 – 233.Google Scholar
Van Olphen, H. (1977) An Introduction to Clay-Colloid Chemistry. J. Wiley & Sons, New York.Google Scholar
Vasseur, G., Djeran-Maigre, I., Grunberger, D., Rousset, G., Tessier, D. & Velde, B. (1995) Evolution of structural and physical parameters of clays during experimental compaction. Marine Petrol. Geol. 12, 941 – 954.Google Scholar