Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T07:22:29.807Z Has data issue: false hasContentIssue false

Glauconite and phosphate peloids in Mesozoic carbonate sediments (Eastern Subbetic Zone, Betic Cordilleras, SE Spain)

Published online by Cambridge University Press:  09 July 2018

J. Jimenez-Millan
Affiliation:
Departamento de Geología, Facultad de Ciencias Experimentales, Universidad de Jaén, Campus Universitario, 23071 Jaén
J. M. Molina
Affiliation:
Departamento de Geología, Facultad de Ciencias Experimentales, Universidad de Jaén, Campus Universitario, 23071 Jaén
F. Nieto
Affiliation:
Departamento de Mineralogía y Petrología and IACT, Universidad de Granada-CSIC, Facultad de Ciencias, 18002 Granada, Spain
L. Nieto
Affiliation:
Departamento de Geología, Facultad de Ciencias Experimentales, Universidad de Jaén, Campus Universitario, 23071 Jaén
P. A. Ruiz-Ortiz
Affiliation:
Departamento de Geología, Facultad de Ciencias Experimentales, Universidad de Jaén, Campus Universitario, 23071 Jaén

Abstract

Glauconite and Ca phosphate peloids occur in Jurassic and Cretaceous bioclastic carbonate rocks from pelagic swell sequences of the Algayat-Crevillente Unit (Subbetic Zone). The size and morphology of the peloids are controlled by the bioclasts. The glauconite in both stratigraphic positions is K rich (>0.69 atoms p.f.u.) and shows well-defined 10 Å. lattice fringes. Poorly crystalline areas with a composition of Fe-smectite are found within the peloids, indicating the nature of the glauconitic precursor. This precursor would be formed in the shielded microenvironments of the bioclast and later transformed to glauconite by equilibration of peloids with sea water that culminated with the crystallization of a phosphatic phase. The greater presence of smectite areas in the Jurassic peloids and the lower K contents (0.69-0.81) of these glauconites, compared with the Cretaceous glauconites (0.81-0.89) can be explained by the calcitic early diagenetic cementation which stopped the process of glauconitization.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amorosi, A. (1995) Glaucony and sequence stratigraphy: a conceptual framework of distribution in siliciclastic sequences. J. Sed. Res. 65, 419–425.Google Scholar
Amouric, M. (1990) La transformation gel → smectite → glauconite. Pp. 451-46l in: Matériaux Agiteux: Structure, Propriétés et Applications (Decarreau, A., editor) Soc. Franc. Minér. Cristal.Google Scholar
Amouric, M. & Parron, C. (1985) Structure and growth mechanism of glauconite as seen by high-resolution transmission electron microscopy. Clays Clay Miner. 33, 473482.CrossRefGoogle Scholar
Bailey, S.W. (1980). Summary of recommendations of AIPEA Nomenclature Committee. Clay Miner. 15, 8593.CrossRefGoogle Scholar
Bocchi, G. & Lucchini, F. (1991) Caratterizzazione mineralogica e geochimica di fosforiti mesozoiche del Penibético (Spagna meridionale). Miner. Petro. Acta, 34, 121131.Google Scholar
Burst, J.F. (1958a) Glauconite pellets: their mineral nature and applications to stratigraphic interpretations. Bull. Am. Ass. Petrol. Geol. 42, 310327.Google Scholar
Burst, J.F. (1958b) Mineral heterogeneity in glauconite pellets. Am. Miner. 43, 481497.Google Scholar
Carson, G.A. & Crowley, S.F. (1993) The glauconitephospahate association in hardgrounds: examples from the Cenomanian of Devon, southwest England. Cret. Res. 14, 6989.Google Scholar
Chaudhuri, A.K., Chanda, S.K. & Dasgupta, S. (1994) Proterozoic glauconitic peloids from South India: their origin and significance. J. Sed. Res. 64, 765770.Google Scholar
Chamley, H. (1989) Clay Sedimentology. Springer, Berlin.CrossRefGoogle Scholar
Clauer, N. (1976) Geochimie isotopique du strontium des milieux sédimentaires. Application á la géochronologie de la coverture du craton ouest-africain. Sci. Géol. Chém., Strasbourg, 45, 256 pp.Google Scholar
Clauer, N., Stille, P., Keppens, E. & O'Neil, J.R. (1992) Le mécanisme de la glauconitisation: apports de la géochimie isotopique du strontium, du néodyme et de l'oxygéne de glauconies récentes. C. R. Acad Sci. Sér. II, 315, 321327.Google Scholar
Cliff, G. & Lorimer, G.W. (1975) The quantitative analysis of thin specimens. J. Microsc. 103, 203207.Google Scholar
Cody, R.D. & ttull, A.B. (1980) Experimental growth of primary anhydrite at low temperatures and water satinities. Geology, 8, 505509.Google Scholar
Dasgupta, S., Chaudhuri, A.K. & Fukuoka, M. (1990) Compositional characteristics of glauconitic alterations of K-feldspar from India and their implications. J. Sed Pet. 60, 277281.Google Scholar
Debrabant, P. & Paquet, J. (1975) L'association glauconites-phosphates-carbonates (Albien de la Sierra de Espuña, Espagne Méridionale). Chem. Geol. 15, 6175.Google Scholar
Galán, E., González 1., Mayoral, E. & Muniz, F. (1995) Contribution of clay mineralogy to the paleoenvironmental interpretation of upper miocene detrital sediments. Southwestern of the Iberian Peninsula. Pp. 311-312 in: Euroclay'95, Book of Abstracts (Elsen, A., Grobet, P., Keung, M., Leeman, H., Schoonheydt, R. & Toufar, H., editors).Google Scholar
Güven, N. (1988) Smectites. Pp. 497-559 in: Hydrous Phyllosilicates (Bailey, S.W., editor) Reviews in Mineralogy, 19. Mineral. Soc. Am., Washington.Google Scholar
Hower, J. (1961) Some factors concerning the nature and origin of galuconite. Am. Miner. 46, 313–334.Google Scholar
Jarvis, I. (1992) Sedimentology, geochemistry and origin of phosphatic chalks: the Upper Cretaceous deposits of NW Europe. Sedimentology, 39, 5597.Google Scholar
Krajewsky, K.P., Van Capellan, P., Trichet, J., Kuhn, O., Lucas, J., Martin-Algarra, A., Prévôt, L., Tewary, V.C., Gaspar, L., Knight, R. & Lamboy, M. (1994) Biological controls and apatite formation in sedimentary environments. Eclog. Geol. Hel. 87, 701745.Google Scholar
Martín-Algarra, A. & Sánchez-Navas, A. (1995). Phosphate stromatolites from condensed cephalopod limestones, Upper Jurassic, Southern Spain. Sedimentology, 42, 893919.Google Scholar
Martín-Algarra, A. & Vera, J.A. (1994) Mesozoic pelagic phosphate stromatolites from the penibetic (Betic Cordillera, southern Spain). Pp. 345-391 in: Phanerozoic Stromatolites H (Bertrand-Sarfati, J. & Monty, C., editors). Kluwer, Dordrecht.Google Scholar
Martínez-Ruiz, F. (1993) Geoquímica y mineralogía del trásito Cretdcico-Terciario en las Cordilleras Bétieas y en la Cuenca Vasco-Cantábrica. PhD thesis, Univ. Granada, Spain.Google Scholar
McArthur, J.M. (1986) Francolite geochemistry-compositional controls during formation, diagenesis, metamorphism and weathering. Geochim. Cosmochim. Acta, 49, 2335.Google Scholar
McRae, S.G. (1972) Glauconite. Earth-Sci. Rev. 8, 397440.CrossRefGoogle Scholar
Møller, N. (1988) The prediction of mineral solubilities in natural waters: A chemical equilibrium model for the Na-Ca-C1-SO4-H2O system, to high temperature and concentration. Geochim. Cosmochim Acta, 52, 821837.Google Scholar
Nieto, L.M. (1996) La cuenca subbética mesozóica en el sector oriental de las Cordilleras Béticas. PhD thesis, Univ. Granada, Spain.Google Scholar
Odin, G.S. (1975). De glauconarium constitutione, originae, aetateque. PhD thesis, Univ. Paris, France.Google Scholar
Odin, G.S. & Fullagar, P.D. (1988) Geological significance of the glaucony facies. Pp. 227294 in: Green Marine Clays. (Odin, G.S., editor). Developments in Sedimentology, 45. Elsevier, Amsterdam.Google Scholar
Odin, G.S. & Letolle, R. (1980) Glauconitization and phosphatization environments: a tentative comparison. SEPMSp. Pub. 29, 227237.Google Scholar
Odin, G.S. & Matter, A. (1981) De glauconiarum originae. Sedimentology, 28, 611–641.CrossRefGoogle Scholar
Odom, I.E. (1984) Glauconite and eeladonite minerals. Pp. 545-572 in: Micas (Bailey, S.W., editor). Reviews in Mineralogy, 13. Mineral. Soc. Am., Washington.Google Scholar
Ostwald, J. & Bolton, B.R. (1992) Glauconite formation as a factor in sedimentary manganese deposit genesis. Econ. Geol. 87, 13361344.Google Scholar
Prévôt, L. & Lucas, J. (1986) Microstrncture of apatite replacing carbonate in sythesized and natural samples. J. Sed. Pet. 56, 153159.Google Scholar
Rawlley, R.K. (1994) Mineralogical investigations on an Indian glauconite sandstone of Madhya Pradesh state. Appl. Clay Sei. 8, 449465.Google Scholar
Stille, P. & Clauer, N. (1994) The process of glauconitization: chemical and isotopic evidence. Contrib. Mineral. Petrol. 117, 253262.Google Scholar
Strickler, M.E. & Ferrell, R.E. Jr. (1990) Fe substitution for AI in glauconite with increasing diagenesis in the first Wilcox sandstone (Lower Eocene), Livingston Parish, Louisiana. Clays Clay Miner. 38, 69–76.Google Scholar
Thompson, R. & Hower, J. (1975) The mineralogy of glauconite. Clays Clay Miner., 23, 289300.Google Scholar
Van Capellan, P. & Bemer, R.A. (1991) Fluorapatite crystal growth from modified seawater solutions. Geochim. Cosmochim. Acta, 55, 12191234.Google Scholar
Velde, B. (1992) Introduction to Clay Minerals. Chapman & Hall, London.Google Scholar
Vera, J.A. & Martín-Algarra, A. (1994) Mesozoic stratigraphic breaks and pelagic stromatolites in the Betic Cordillera, Southern Spain. Pp. 319-344 in: Phanerozoic Stromatolites II (Bertrand-Sarfati, J. & Monty, C., editors). Kluwer, Dordrecht.Google Scholar