Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T00:09:18.187Z Has data issue: false hasContentIssue false

Geological features and geochemical characteristics of Late Devonian–Early Carboniferous K-bentonites from northwestern Turkey

Published online by Cambridge University Press:  02 January 2018

M.C. Göncüoğlu
Affiliation:
Department of Geological Engineering, Middle East Technical University, Ankara, Turkey
A. Günal-Türkmenoğlu
Affiliation:
Department of Geological Engineering, Middle East Technical University, Ankara, Turkey
Ö. Bozkaya*
Affiliation:
Department of Geological Engineering, Pamukkale University, Denizli, Turkey
Ö. Ünlüce-Yücel
Affiliation:
Department of Geological Engineering, Middle East Technical University, Ankara, Turkey
C. Okuyucu
Affiliation:
Department of Geological Engineering, Selçuk University, Konya, Turkey
İ.Ö. Yilmaz
Affiliation:
Department of Geological Engineering, Middle East Technical University, Ankara, Turkey
*

Abstract

Newly discovered K-bentonite beds, interstratified with limestones/dolomitic limestones of the Upper Devonian–Lower Carboniferous Yılanlı Formation, are exposed in the northwestern Black Sea region of Turkey, around Zonguldak and Bartın. K-bentonite samples collected from four different locations: the Gavurpınarı and Yılanlı Burnu quarries from the Bartın area, the Çimşir Çukurları quarry from the Şapça area, and the Güdüllü and Gökgöl highway tunnel section near Zonguldak city were investigated using optical microscopy, X-ray diffraction and inductively coupled plasma mass spectrometry in order to reveal their mineralogical and geochemical characteristics and understand their origin and evolution. The K-bentonites occur at different levels in the Yılanlı Formation as 2–40 cm-thick, greenish to yellowish beds cropping out several hundred metres along strike. Preliminary biostratigraphic data suggest that the protoliths of the Bartın (Gavurpınarı and Yılanlı Burnu) and Güdüllü K-bentonites were deposited at around the boundary between the Frasnian and Famennian, whereas those in the Şapça and Gökgöl sections are slightly younger (Devonian–Carboniferous boundary interval). The lithofacies types of the host carbonate rocks suggest an ‘epeiric’ shallow carbonate platform environment. Illite and mixed-layer illite-smectite were the major clay minerals in the K-bentonites. The K-bentonites from the Bartın area display a high degree of illitization and consist mainly of illite indicating high-grade diagenesis, whereas illite-smectite-rich samples from the Şapca and Gökgöl tunnel locations reflect relatively lower diagenetic conditions. According to their geochemical compositions, two groups of K-bentonites were distinguished, one with alkali basalt (Bartın area and Güdüllü locations) and one with trachyte affinities (Gökgöl tunnel and Şapça locations). Geochemical fingerprinting of K-bentonites by trace and rare earth element (REE) data suggest that tephras with alkali basalt composition have been derived by a source formed in a ‘continental back-arc’ setting, whereas the source of K-bentonites with trachytic precursors is related to ‘continental within-plate rifting’. An evaluation of the global Late Devonian and Devonian–Carboniferous volcanism suggests that the bentonite precursors may be related to late-Variscan magmatism in Laurussia.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This work was originally presented during the session ‘Bentonites linking clay science with technology’, part of the Euroclay 2015 conference held in July 2015 in Edinburgh, UK.

References

Akbas, B., Altun, I.E. & Aksay, A. (2002) 1:100.000 Scaled Geological Maps. Sheet Zonguldak E28. General Directorate of Mineral Research Exploration, Ankara, Turkey.Google Scholar
Algeo, T.J., Berner, R.A., Maynard, J.P. & Scheckler, S.E. (1995) Late Devonian oceanic anoxic events and biotic crises: ‘Rooted’ in the evolution of vascular land plants. GSA Today, 5, 6466.Google Scholar
Alisan, C. & Derman, A.S. (1995) The first palynological age, sedimentological and stratigraphic data for the Çakraz Group (Triassic), western Black Sea. Pp. 9398 in: Geology of The Black Sea Region: Proceedings of the International Symposium on the Geology of Black Sea Region (A. Erler, editor). General Directorate of Mineral Research and Exploration, Ankara, Turkey.Google Scholar
Árkai, P., Mählmann, R.F., Suchý, V., Balogh, K., Sýkorová, I. & Frey, M. (2002) Possible effects of tectonic shear on phyllosilicates: a case study from the Kandersteg area, Helvetic domain, Central Alps, Switzerland. Schweizerische Mineralogische und Petrographische Mitteilungen, 82, 273290.Google Scholar
Aydın, M., Serdar, H.S., Şahintiirk, O., Yazman, M., Cokugras, R., Demir, O. & Özcelik, Y. (1987) Camdag (Sakarya)-Sünnicedag (Bolu) yöresinin jeo-lojisi. Bulletin of the Geological Society of Turkey, 30, 14.(in Turkish).Google Scholar
Bailey, S.W. (1988) X-ray diffraction identification of the polytypes of mica, serpentine, and chlorite. Clays and Clay Minerals, 36, 193213.CrossRefGoogle Scholar
Bergström, S.M., Huff, W.D., Kolata, D.R. & Bauert, H. (1995) Nomenclature, stratigraphy, chemical fingerprinting, and areal distribution of some Middle Ordovician K-bentonites in Baltoscandia. Geoliska Förenigensi Stockholm Förhandingar, 117, 113.Google Scholar
Bozkaya, Ö., Yalçın, H. & Gonciioglu, M.C. (2012) Mineralogic evidences of a mid-Paleozoic tectono-thermal event in the Zonguldak terrane, NW Turkey: implications for the dynamics of some Gondwana-derived terranes during the closure of the Rheic Ocean. Canadian Journal of Earth Sciences, 49, 559575.Google Scholar
Bozkaya, Ö., Tiirkmenoglu-Giinal, A., Gonciioglu, M.C., Ünlüce-Yücel, Ö., Yılmaz, I.Ö. & Schroeder, P.A. (2016) Illitization of Late Devonian-Early Carboniferous K-bentonites from Western Pontides, NW Turkey: Implications for their origin and age. Applied Clay Science, dx.doi.org/10.1016/j. clay.2016.08.020.Google Scholar
Brown, G. & Brindley, G.W. (1980) X-ray diffraction procedures for clay mineral identification. Pp. 305360 in: Crystal Structures of Clay Minerals and their X-Ray Identifiction (G. Brown & G.W. Brindley, editors). Mineralogical Society, London, UK.Google Scholar
Christidis, G., Scott, P.W. & Marcopoulos, T. (1995) Origin of bentonite deposits of eastern Milos, Aegean, Greece: geological, mineralogical and geochemical evidence. Clays and Clay Minerals, 43, 6377.Google Scholar
Condie, K.C. (1978) Geochemistry of Proterozoic granitic plutons from New Mexico, U.S.A. Chemical Geology, 21, 131149.Google Scholar
Dean, W.T., Martin, F., Monod, O., Demir, O., Richards, R.B., Bultynck, P. & Bozdogan, N. (1997) Lower Paleozoic stratigraphy, Karadere-Zirze area, Central Pontides, N Turkey. Pp. 3238 in: Early Paleozoic Evolution in NW Gondwana (M.C. Gonciioglu & A.S. Derman, editors). Turkish Association of Petroleum Geologists Special Publication, 3 pp.Google Scholar
Dellisanti, F., Pini, G.A., Tatoe, F. & Bandin, F. (2008) The role of tectonic shear strain on the illitization mechanism of mixed-layer illite-smectite. A case study from a fault zone in the northern Apennines, Italy. International Journal of Earth Sciences (Geologische Rundschau), 97, 601616.Google Scholar
Derman, A.S. (1997) Sedimentary characteristics of Early Paleozoic rocks in the western Black Sea region, Turkey. Pp. 2431 in: Early Paleozoic Evolution in NW Gondwana (M.C. Gonciioglu & A.S. Derman, editors). Turkish Association of Petroleum Geologists Special Publication, 3 pp.Google Scholar
Dil, N. (1976) Assemblages caracteristiques de foramini-feres du Devonien superieur et du Dinantien de Turquie (Bassin Carbonifere de Zonguldak). Annales de la Societe Geologique de Belgique, 99, 373400.(in French).Google Scholar
Floyd, P.A. & Winchester, I.A. (1978) Identification and discrimination of altered and metamorphosed volcanic rocks using immobile elements. Chemical Geology, 21, 291306.Google Scholar
Fortey, N.J., Merriman, R.J. & Huff, W.D. (1996) Silurian and Late-Ordovician K-bentonites as a record of late Caledonian volcanism in the British Isles. Transactions Royal Society Edinburgh Earth Sciences, 86, 167180.Google Scholar
Frey, M. (1987) Very lowgrade metamorphism of clastic sedimentary rocks. Pp. 958 in: Low-Grade Metamorphism (M. Frey, editor). Blackie, Glasgow, UK.Google Scholar
Gedik, L., Pehlivan, S., Duru, M. & Timur, E. (2005) 1:50.000 Scaled Geological Maps and Explanations: Sheets Bursa G22a and İstanbul F22d. General Directorate of Mineral Research Exploration, Ankara, Turkey.Google Scholar
Gonciioglu, M.C. & Kozlu, H. (2000) Early Paleozoic evolution of NW Gondwanaland: data from southern Turkey and surrounding regions. Gondwana Research, 3, 315324.Google Scholar
Gonciioglu, M.C., Dirik, K. & Kozlu, H. (1997) General characteristics of pre-Alpine and Alpine terranes in Turkey: Explanatory notes to the terrane map of Turkey. Annales Géologiques des Pays Helléniques, 37, 515536.Google Scholar
Gonciioglu, M.C., Okuyucu, C. & Dimitrova, T. (2011) Late Permian (Tatarian) deposits in NW Anatolia: palaeo-geographical implications. Geoecomarina, 17, 7982.Google Scholar
Gonciioglu, M.C., Sachanski, V., Gutierrez-Marco, J.C. & Okuyucu, C. (2014) Ordovician graptolites from the basal part of the Palaeozoic transgressive sequence in the Karadere area, Zonguldak Terrane, NW Turkey. Estonian Journal of Earth Sciences, 63, 227232.Google Scholar
Grathoff, G.H. & Moore, D.M. (1996) Illite polytype quantification using Wildfire©-calculated X-ray diffraction patterns. Clays and Clay Minerals, 44, 835842.Google Scholar
Guggenheim, S., Bain, D.C., Bergaya, F., Brigatti, M.F., Drits, V., Eberl, D.D., Formoso, M., Galán, E., Merriman, R.J. & Peacor, D.R. (2002) Report of the Association Internationale pour L'etude des Argiles (AIPEA) Nomenclature Committee for 2001: Order, disorder, and crystallinity in phyllosilicates and the use of the ‘crystallinity’ index. Clay Minerals, 37, 389393.Google Scholar
Guidotti, C.Y., Mazzoli, C., Sassi, F.P. & Blencoe, J.G. (1992) Compositional controls on the cell dimensions of 2M1 muscovite and paragonite. European Journal of Mineralogy, 4, 283297.Google Scholar
Günal Tiirkmenoglu, A., Bozkaya, Ö., Ünlüce Yücel, Ö., Gonciioglu, M.C. & Yilmaz, L.O. (2012) ZonguldakBartın (Batı Karadeniz) bölgesindeki Devoniyen yasl K-bentonitlerin kil mineralojisi. 15th National Clay Symposium, Proceedings, 29-2, Nigde, Turkey (in Turkish).Google Scholar
Günal Tiirkmenoglu, A., Bozkaya, Ö., Gonciioglu, M.C., Ünlüce Yücel, Ö., Yilmaz, L.O. & Okuyucu, C. (2015) Clay mineralogy, chemistry, and diagenesis of Late Devonian K-bentonite occurrences in northwestern Turkey. Turkish Journal of Earth Sciences, 24, 209229.CrossRefGoogle Scholar
Histon, K., Klein, P., Schönlaub, H.P. & Huff, W.D. (2007) Lower Paleozoic K-bentonites from Carnic Alps, Austria. Austrian Journal of Earth Sciences, 100, 2642.Google Scholar
Hoffman, J. & Hower, J. (1979) Clay mineral assemblages as low grade metamorphic geothermometers: application to the thrust faulted disturbed belt of Montana, U.S.A. Pp. 5579 in: Aspects of Diagenesis (P.A. Scholle & R. Schluger, editors). SEPM Special Publication, 26, Society for Sedimentary Geology, Tulsa, Oklahoma, USA.Google Scholar
Huff, W.D. & Morgan, D.J. (1990) Stratigraphy, mineralogy and tectonic setting of Silurian K-bentonites in southern England and Wales. 9th International Clay Conference, 33—42, Strasbourg, France.Google Scholar
Huff, W.D. & Tiirkmenoglu, A.G. (1981) Chemical characteristics and origin of Ordovician K-bentonites along the Cincinnati Arch. Clays and Clay Minerals, 29, 113123.Google Scholar
Huff, W.D., Bergström, S.M. & Kolata, D.R. (1992) Gigantic Ordovician ash fall in North America and Europe: Biological, tectonomagmatic and event-stratigraphic significance. Geology, 20, 875878.2.3.CO;2>CrossRefGoogle Scholar
Huff, W.D., Bergström, S.M., Kolata, D.R. & Sun, H. (1997) The Lower Silurian Osmundsberg K-bentonite. Part II: mineralogy, geochemistry, chemostratigraphy and tectonomagmatic significance. Geological Magazine, 135, 1526.Google Scholar
Izett, G.A. (1981) Volcanic ash beds: Recorders of Upper Cenozoic silisic pyroclastic volcanism in the western United States. Journal of Geophysical Research, 86, 1020010222.Google Scholar
Jackson, M.L. (1969) Soil Chemical Analysis: Advanced Course (2nd edition). Published by the author, Department of Soil Science, Univeristy of Wisconsin, Madison, Wisconsin, USA.Google Scholar
Kalvoda, J. (2001) Upper Devonian-Upper Carboniferous foraminiferal paleobiogeography and Perigondwana terranes at the Baltica-Gondwana interface. Geologica Carpathica, 52, 205215.Google Scholar
Kerey, I.E. (1984) Facies and tectonic setting of the upper Carboniferous rocks of NW Turkey. Pp. 123128 in: The Geological Evolution of the Eastern Mediterranean (A.H.F Robertson & J. Dixon, editors). Blackwell Scientific, Oxford, UK.Google Scholar
Kisch, H.J. (1991) Illite crystallinity: recommendations on sample preparation X-ray diffraction settings and inter-laboratory samples. Journal ofMetamorphic Geology, 9, 665670.Google Scholar
Kolata, D.R., Frost, J.K. & Huff, W.D. (1987) Chemical correlation of K-bentonites in the Middle Ordovician Decorah Subgroup, upper Mississippi Valley. Geology, 15, 208211.Google Scholar
Kolata, D.R., Huff, W.D. & Bergström, S.M. (1998) Nature and regional significance of unconformities associated with the Middle Ordovician Hagan K-bentonite complex in the North American midcontinent. Geological Society of American Bulletin, 110, 723739.Google Scholar
Kübler, B. (1968) Evaluation quantitative du metamor-phisme par la cristallinite de l'illite. Bulletin-Centre de Recherches Pau-SNPA, 2, 385397.Google Scholar
Mamet, B.L. & Preat, A. (2009) Middle Devonian algal and problematic microfossils of the ‘Frondry des Chiens’ (southern border of Dinant Synclinorium, Belgium): Paleobathymetric implications. Revue de Micropaleontologia, 52, 249263.Google Scholar
McKenzie, D. & O'Nions, R.K. (1991) Partial melt distributions from inversion of rare earth element concentrations. Journal of Petrology, 32, 10211091.Google Scholar
Merriman, R.J. & Frey, M. (1999) Patterns of very low-grade metamorphism in metapelitic rocks. Pp. 61107 in: Low-Grade Metamorphism (M. Frey & D. Robinson, editors). Blackwell Science, Oxford, UK.Google Scholar
Merriman, R.J. & Peacor, D.R. (1999) Very low-grade metapelites: mineralogy, microfabrics and measuring reaction progress. Pp. 1060 in: Low-Grade Metamorphism (M. Frey & D. Robinson, editors). Blackwell Science, Oxford, UK.Google Scholar
Merriman, R.J. & Roberts, B. (1990) Metabentonites in the Moffat shale Group, Southern uplands of Scotland: Geochemical evidence of ensialic marginal basin volcanism. Geological Magazine, 127, 259271.Google Scholar
Meschede, M. (1986) A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chemical Geology, 56, 207218.Google Scholar
Min, K., Renne, P.R. & Huff, W.D. (2001) 40Ar/39Ar dating of Ordovician K-bentonites in Laurentia and Baltoscandia. Earth and Planetary Science Letters, 185, 121134.Google Scholar
Moore, D.M. & Reynolds, R.C. Jr (1997) X-ray Diffraction and the Identification and Analysis of Clay Minerals 2nd edition. Oxford University Press, New York.Google Scholar
Nakamura, N. (1974) Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Geochimica et Cosmochimica Acta, 38, 757775.Google Scholar
Özkan, R. & Vachard, D. (2015) A new early Frasnian (Late Devonian) foraminifer from eastern Taurides (Turkey): Evolutionary and paleobiogeographic implications. Revue de Micropaleontologie, 58, 267282.Google Scholar
Pearce, I.A. (1974) Statistical analysis of major element patterns in basalts. Journal of Petrology, 17, 1543.Google Scholar
Pearce, C.A., Harris, N.B.W. & Tindle, A.G. (1984) Trace element discrimation diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25, 956983.Google Scholar
Poyarkov, B.V. (1969) Stratigraphy and foraminifers of the Devonian system in the Tian-Shian (in Russian). Akad. Nauk Kirgiz. SSR, Inst. Geol., Izdatel. Ilim, Frounze, 1-186.Google Scholar
Racki, G. & Sobon-Podgorska, I. (1993) Givetian and Frasnian calcareous microbiatas of the Holy Cross Mountains. Acta Palaentologica Polonica, 37, 255289.Google Scholar
Sabirov, A.A. (2004) Pre-Visean foraminifers from Central Asia and Kazakhstan. Paleontological Journal, 38, 238246.Google Scholar
Schanski, V., Gonciioglu, M.C. & Gedik, I. (2010) Late Telychian (Early Silurian) graptolitic shales and the maximum Silurian highstand in the NW Anatolian Palaeozoic terranes. Palaeogeography, Palaeoclimatology Palaeoecology, 291, 419428.Google Scholar
Saylor, B.Z., Poling, J.M. & Huff, W.D. (2005) Stratigraphic and chemical correlation of volcanic ash beds in the terminal Proterozoic Nama Group, Namibia. Geological Magazine, 142, 519538.Google Scholar
Taylor, S.R. & McLennan, S.M. (1988) The significance of rare earths in geochemistry and cosmochemistry. Pp. 485578 in: Handbook on Physics and Chemistry of Rare Earths (K.A. Gschneider & L. Eyring, editors). Elsevier, New York.Google Scholar
Teale, C.T. & Spears, D.A. (1986) The mineralogy and origin of some Silurian bentonites, Welsh Borderland, U.K. Sedimentology, 33, 75765.CrossRefGoogle Scholar
Tiirkmenoglu, A. (2001) A Paleozoic K-bentonite occurrence in Turkey. In: Mid-European Clay Conference ‘01. Book of Abstracts, Stara Leusa, Slovakia.Google Scholar
Tiirkmenoglu, A., Gonciioglu, M.C. & Bayraktaroglu Ş. (2009) Early Carboniferous K-bentonite formation around Bartın: Geological implications. Pp. 209 in: 2nd International Symposium on the Geology of the Black Sea Region, İstanbul, Turkey.Google Scholar
Vachard, D. (1991) Parathuramminides et Moravamminides (Microproblematica) de l'emsien superieur de la formation Moniello (Cordilleres Cantabriques, Espagne). Revue de Paléobiologie, 10, 255299.Google Scholar
Vachard, D. (1994) Foraminiferes et Moravamminides du domaine Ligerien (Massif Armoricain, France). Palaeontographica Abteilung A-Paläozoologie-Stratigraphie, A 231, 192.Google Scholar
Vachard, D., Zahraoui, M. & Cattaneo, G. (1994) Parathuramminines et Moravamminides (Foraminiferes?) du Givetien du Maroc Central. Revue de Paléobiologie, 14, 119.Google Scholar
Ver Straeten, C.A. (2004) K-bentonites, volcanic ash preservation, and implications for Early to Middle Devonian volcanism in the Acadian orogen, eastern North America. Geological Society of America Bulletin, 116, 474489.Google Scholar
Vissarionova, A.Ya. (1950) Faune de foraminiféres du Dévonien de Bachkirie. Bachkir, 1, 3437.Google Scholar
Warr, L.N. & Ferreiro Mahlmann, R. (2015) Recommendations for Kübler Index standardization. Clay Minerals, 50, 283286.Google Scholar
Warr, L.N. & Rice, A.H.N. (1994) Interlaboratory standardisation and calibration of clay mineral crys- tallinity and crystallite size data. Journal of Metamorphic Geology, 12, 141152.Google Scholar
Weaver, C.E. (1953) Mineralogy and Petrology of some Ordovician K-bentonites and related linestones. Geological Society of America Bulletin, 64, 921944.Google Scholar
Winchester, J.A. & Floyd, P.A. (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20, 325343.Google Scholar
Wood, D.A. (1980) The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province. Earth and Planetary Science Letters, 50, 1130.Google Scholar
Yalçın, M.N. & Yılmaz, I. (2010) Devonian in Turkey - a review. Geologica Carpathica, 61, 235253.CrossRefGoogle Scholar
Yanev, S., Gonciioglu, M.C., Gedik, I., Lakova, I., Boncheva, I., Sachanski, V., Okuyucu, C., Ozgiil, N., Timur, E. & Maliakov, Y. (2006) Stratigraphy, correlations and palaeogeography of Palaeozoic terranes of Bulgaria and NW Turkey: a review of recent data. Pp. 5167 in: Tectonic Development of the Eastern Mediterranean Region (A.H.F. Robertson & D. Mountrakis, editors). Special Publications 260, Geological Society of London, UK, 260 pp.Google Scholar