Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T16:18:27.276Z Has data issue: false hasContentIssue false

Geochemistry and mineralogy as indicators of parental affinity for Cenozoic bentonites: a case study from S. Croce di Magliano (southern Apennines, Italy)

Published online by Cambridge University Press:  09 July 2018

R. Laviano
Affiliation:
Dipartimento Geomineralogico, Università degli Studi di Bari, via E. Orabona 4, 70125 Bari, Italy
G. Mongelli
Affiliation:
DiSGG, Università della Basilicata, via della Tecnica 3, 85100 Potenza, Italy

Abstract

The major and trace element contents and mineralogical composition of Cenozoic bentonites from the southern Apennines (Italy) have been determined, for the whole-rocks and the <2 µm size-fractions, in order to constrain parental affinities. The main mineralogical and chemical differences have been recognized in eleven samples allowing them to be grouped into two distinct subsets. The differences are based on smectite abundance, occurrence or lack of detrital clay phases, different contents of Ti, Fe, Mn, K, P, Rb, Sc, V, Cr and Ni and differences in the Eu/Eu* and Ti/Al elemental ratios. These ratios indicate an affinity for felsic volcanics for the subset showing high smectite contents. The low smectite subset shows, instead, an affinity for Cretaceous-Oligocene southern Apennine shales. A similar result is obtained using the La-Th-Sc and Th-Sc-Zr/10 diagrams. We suggest that during the deposition of the southern Apennine shales, episodic volcanic events took place. These were associated with the suture stage of the Tethyan ocean that promoted accumulation of felsic ash in the related basin and the diagenetic alteration of these materials produced bentonitic layers interbedded with shales.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bhatia, M.R. & Crook, K.A.W. (1986) Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basin. Contrib. Mineral. Pet. 92, 181193.CrossRefGoogle Scholar
Brookins, D.G. (1988) Eh-pH Diagrams for Geochemistry. Springer Verlag, Berlin.Google Scholar
Caggianelli, A. & Fiore, S. (1994) On the occurrence of REE-bearing accessory phases in the clay fraction of pelites: an example from southern Apennines. 16th General meeting I.M.A., September 1994, Pisa (Italy), 61-62.Google Scholar
Chaudhuri, S. & Cullers, R.L. (1979) The distribution of rare-earth elements in deeply buried Gulf coast sediments. Chem. Geol. 24, 327334.Google Scholar
Condie, K.C. (1993) Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. Chem. Geol. 104, 137.CrossRefGoogle Scholar
Crichton, J.G. & Condie, K.C. (1993) Trace elements as source indicators in cratonic sediments: a case study from the early Proterozoic Libby Creek Group, southwestern Wyoming. J. Geol. 101, 319332.Google Scholar
Dazzaro, L. & Rapisardi, L. (1984) Nuovi dati stratigrafici, tettonici e paleogeografici della parte settentrionale dell'Appennino Dauno. Boll. Soc. Geol. It. 103, 5158.Google Scholar
Elderfield, H. & Sholkowitz, E.R. (1987) Rare earth elements in the pore waters of reducing nearshore sediments. Earth Planet. Sci. Lett. 82, 280288.Google Scholar
Fiore, S. & Mongelli, G. (1991) Hypothesis on the genesis of clay minerals in the fine fraction of “Argille varicolori” from Andretta (southern Apennines). Mineral. Petrogr. Ada, 34, 181–188. Fisher, R.V. & Schmincke, H.U. (1984) Pyrodastic Rocks. Springer, Berlin.Google Scholar
Franzini, M., Leoni, L. & Saitta, M. (1972) A simple method to evaluate the matrix effects in X-ray fluorescence analysis. X-ray Spectrom. 1, 151–154.Google Scholar
Franzini, M., Leoni, L. & Saitta, M. (1975) Revisione di una metodologia analitica per fluorescenza X basata sulla correzione completa degli effetti di matrice. Soc. Ital. Mineral. Pet. 31, 365378.Google Scholar
Grim, R.E. & Goven, N. (1978) Bentonites. Developments in Sedimentology, 24. Elsevier, Amsterdam.Google Scholar
Guerrera, F. & Veneri, F. (1989) Evidenze di attivita vulcanica nei sedimenti neogenici e pleistocenici dell'Appennino: stato delle conoscenze. Boll. Soc. Geol. It. CVIII, 121-159.Google Scholar
Hein, J.R. & Scholl, D.W. (1978) Diagenesis and distribution of late Cenozoic volcanic sediments in the southern Bering Sea. Geol. Soc. Am. Bull. 89, 197210.2.0.CO;2>CrossRefGoogle Scholar
Laviano, R. (1987) Analisi mineralogica quantitativa di BrAille mediante diffrattometria di Raggi, X. Pp. 215–234 in: Procedure di Analisi di Materiali Argillosi. Collana di studi ambientali Ente Nazionale Energie Alternative (ENEA), Santa Teresa, Lerici (Sp).Google Scholar
Laviano, R. & Melidoro, A. (1994) Mineralogia e chimismo delle bentoniti di S. Croce di Magliano (CB). Geol. Appl. e Idrogeol. XXIX, 63-75.Google Scholar
Leoni, L. & Saitra, M. (1976) Determination of yttrium and niobium on standard silicate rocks by X-ray fluorescence analysis. X-ray Spectrom. 5, 29–30.Google Scholar
Marshall, C.E. (1949) The Colloid Chemistry of Silicate Minerals. Academy Press, New York.Google Scholar
Mclennan, S.M., Taylor, S.R., Mcculloch, M.T. & Maynard, J.B. (1990) Geochemical and Nd-Sr isotopic composition of deep sea turbidites: crustal evolution and plate tectonic association. Geochim. Cosmochim. Acta, 54, 20152050.CrossRefGoogle Scholar
Milliken, K.L. & Mack, L.E. (1990) Subsurface dissolution of heavy minerals, Frio Formation sandstones of the ancestral Rio Grande Province, South Texas. Sediment. Geol. 68, 187199.Google Scholar
Millot, G. (1970) Geology of Clays. Masson, Paris.Google Scholar
Middelburg, J.J., Van Der Weijden, C.H. & Woittiez, J.R.W. (1988) Chemical processes affecting the mobility of major, minor and trace elements during weathering of granitic rocks. Chem. Geol. 68, 253273.CrossRefGoogle Scholar
Moncelh, G. (1995) Trace elements distribution and mineralogical composition in the <2 μm size-fraction of southern apenninic shales (Italy). Mineral. Pet. 53, 103114.Google Scholar
Mongelli, G., Cullers, R.L. & Muelheisen, S. (1996) Geochemistry of meso-cenozoic apenninic shales, southern Italy: implications for mineralogical and grain-size control and provenance. Eur. J. Mineral. (submitted).Google Scholar
Murray, R.W., Buchholtz Ten Brink, M.R., Brumsack, H.J., Gerlach, D.C. & Price Russ Iii, G. (1991) Rare earth elements in Japan Sea sediments and diagenetic behavior of Ce/Ce*: Results from ODP Leg 127. Geochim. Cosmochim. Acta, 55, 2453–2466.Google Scholar
Ognmen, L. (1985) Relazione sul modello geodinamico “conservativo” della regione italiana. Ente Nazionale Energie Alternative (ENEA). Google Scholar
Pacey, N.R. (1984) Bentonites in the chalk of central eastern England and their relation to the opening of the northeast Atlantic. Earth Planet. Sci. Lett. 67, 4860.Google Scholar
Schultz, L.G. (1964) Quantitative interpretation of mineralogical composition from X-ray and chemical data for the Pierre Shale. U.S. Geol. Surv. Prof. Pap. 391-C, 1-31.Google Scholar
Shaw, D.B., Stevenson, R.G., Weaver, C.E. & Bradley, W.F. (1971) Interpretation of X-ray diffraction data. Pp. 554–557 in: Procedures in Sedimentary Petrology (Carver, R.E., editor). Wiley, New York.Google Scholar
Sholkowitz, E.R., Piepgras, D.J. & Jacobsen, S.B. (1989) The pore water chemistry of rare earth elements in Buzzard Bay sediments. Geochim. Cosmochim. Acta, 53, 28472856.Google Scholar
Slack, J.F. & Stevens, B.P.J. (1994) Clastic metasediments of the early Proterozoic Broken Hill Group, New South Wales, Australia: Geochemistry, provenance, and metallogenic significance. Geochim. Cosmochim. Acta, 58, 36333652.Google Scholar
Spears, D.A. & Kanaris-Sotiriou, R. (1979) A geochemical and mineralogical investigation of some British and other European tonsteins. Sedimentology, 26, 407425.Google Scholar
Sverjensky, D.A. (1984) Europium redox equilibria in aqueous solution. Earth Planet. Sci. Lett. 67, 70–78.Google Scholar
Taylor, S.R. & Mclennan, S.M. (1985) The Continental Crust: its Composition and Evolution. Blackwell Ed., Oxford.Google Scholar