Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T15:57:07.819Z Has data issue: false hasContentIssue false

Formation of synthetic analogues of double metal-hydroxy carbonate minerals under controlled pH conditions: I. The synthesis of pyroaurite and reevesite

Published online by Cambridge University Press:  09 July 2018

H. C. B. Hansen
Affiliation:
Commonwealth Scientific and Industrial Research Organisation, Division of Soils, Private Bag 2, Glen Osmond, South Australia 5064
R. M. Taylor
Affiliation:
Commonwealth Scientific and Industrial Research Organisation, Division of Soils, Private Bag 2, Glen Osmond, South Australia 5064

Abstract

Two-layered Fe(III)-M(II) hydroxy carbonates (M(II) = Ni or Mg) have been synthesized by induced hydrolysis using controlled air oxidation of an aqueous Fe(II)-M(II) mixture (M(II)/Fe(II) ratio >3) at a pH below which the hydroxide of the M(II) cation precipitates. The crystalline, homogeneous product can be a single phase consisting of very thin circular to hexagonal plates (0·2–0·8 µm diam.). For synthetic reevesite (Ni(II)-Fe(III) hydroxy carbonate), stable spherular aggregates are formed. The well crystallized products have an M(II)/Fe(III) ratio of about two. However, by varying the pH, the initial M(II)-Fe(III) ratio and the oxidation rate, the M(II)/Fe(III) ratio in the product and its crystallinity can be varied. The derived formulae are in reasonable agreement with the known composition of pyroaurite-type compounds. Possible synthesis pathways are discussed. The ability to control some physical and morphological features of the products indicates that the synthesis technique could prove advantageous in the preparation of certain catalyst precursors.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allmann, R. von (1970) Doppelschichtstrukturen mit brucitahnlichen Schichtionen [Me(II)1_xMe(III)Mx(OH)2]x+. Chimia, 24, 99–108.Google Scholar
Baes, C.F. Jr. & Mesmer, R.E. (1976) The Hydrolysis of Cations. Wiley & Sons, New York. 489 pp.Google Scholar
Bish, D.L. & Livingstone, A. (1981) The crystal chemistry and paragenesis of honessite and hydrohonessite: the sulphate analogues of reevesite. Mineral. Mag., 44, 339–343.CrossRefGoogle Scholar
Brindley, G.W. & Bish, D.L. (1977) A reinvestigation of takovite, a nickel aluminum hydroxy-carbonate of the pyroaurite group. Am. Mineral., 62, 458–464.Google Scholar
Brindley, G.W. & Kikkawa, S. (1979) A crystal-chemical study of Mg,Al and Ni,Al hydroxy perchlorates and hydroxy-carbonates. Am. Miner., 64, 836–843.Google Scholar
Dunn, P.J., Peacor, D.R. & Palmer, T.D. (1979) Desautelsite, a new mineral of the pyroaurite group. Am. Miner., 64, 127–130.Google Scholar
Feitknecht, W. (1942) Über die Bildung von Doppelhydroxyden zwischen zwei- und dreiwertigen Metallen. Helv. Chim. Acta, 25, 555–569.Google Scholar
Feitknecht, W. (1952) Die festen Hydroxysalze zwei-wertiger Metalle. Fortschr. Chem. Forsch., 2, 650–757.Google Scholar
Feitknecht, W. & Gerber, M. (1942) Zur Kenntnis der Doppelhydroxyde and basischen Doppelsalze. III. Über Magnesium-Aluminiumdoppelhydroxyd. Helv. Chim. Acta 25, 131.CrossRefGoogle Scholar
Feitknecht, W. & Keller, G. (1950) Über die dunkelgriinen Hydroxyverbindungen des Eisens. Z.anorg. allg. Chem., 262, 61–68.Google Scholar
Fischer, W.R. (1972) Die Wirkung von Zweivertigen Eisen auf Auflösung und Umwandlung von Eisen (III)- hydroxiden in Pseudogley and Gley. Trans. Int. Soil Sci. Soc. Comm. V & VI Stuttgart,, 37 44.Google Scholar
Gastuche, M.C., Brown, G. & Mortland, M.M. (1967) Mixed magnesium-aluminium hydroxides: I. Preparation and characterisation of compounds formed in dialysed systems. Clay Miner., 7, 177 192.CrossRefGoogle Scholar
Hashi, K., Kikkawa, S. & Koizumi, M. (1983) Preparation and properties of pyroaurite-like hydroxy minerals. Clays Clay Miner., 31, 152 154.CrossRefGoogle Scholar
Hernandez-Moreno, M.J., Ulibarri, M.A., Rendon, J.L. & Serna, C.J. (1985) IR characteristics of hydrotalcite- like compounds. Phys. Chem. Miner., 12, 34 38.CrossRefGoogle Scholar
Lieser, K.H. & Schroeder, H. (1959) Kinetics of solution of anhydrous Fe(III) sulpahte in solutions containing Fe(II) ions. Z. Electrochem., 64, 252–257.Google Scholar
Larsen, S. (1949) An apparatus for the determination of small quantities of carbonate. Acta Chem. Scand., 3, 967 970.CrossRefGoogle Scholar
Mascolo, G. & Marino, O. (1980) A new synthesis and characterisation of magnesium-aluminium hydroxides. Mineral Mag., 43, 619–621.CrossRefGoogle Scholar
Meites, L. & Meites, T. (1948) Removal of oxygen from gas streams. Anal. Chem., 20, 984 985.CrossRefGoogle Scholar
Mendiboure, A. & Schöllhorn, R. (1986) Formation and anion exchange reactions of layered transition metal hydroxides. Rev. Chim. Miner., 23, 819 827.Google Scholar
Miyata, S. (1975) The synthesis of hydrotalcite-like compounds and their structures and physico-chemical properties. I. The systems Mg2+-Al3+-NO3_, Mg2+-Al3+-CP, Mg2+-AI3+-C1O4 -, Ni2+-Al3+-Cl-. Clays Clay Miner., 23, 369 375.CrossRefGoogle Scholar
Miyata, S. (1983) Anion-exchange properties of hydrotalcite-like compounds. Clays Clay Miner., 31, 305-311. Nickel, E.H. & Wildman, J.E. (1981) Hydrohonessitea new hydrated Ni-Fe hydroxy sulphate mineral; its relationship to honessite, carrboydite, and minerals of the pyroaurite group. Mineral. Mag., 44, 333 337.CrossRefGoogle Scholar
Pausch, I., Lohse, H.-H., Schürmann, K. & Allmann, R. (1986) Syntheses of disordered and A1 rich hydrotalcite- like compounds. Clays Clay Minér., 34, 507 510.CrossRefGoogle Scholar
Raven, M. & Self, P.G. (1988) Manipulation of Powder X-ray Diffraction Data.CSIRO Division of Soils Technical Memorandum 30/1988, Adelaide, Australia.Google Scholar
Reichle, W.T. (1985) Catalytic reactions by thermally activated, synthetic, anionic clay minerals. J. Catal., 94, 547 557.CrossRefGoogle Scholar
Rouxhet, P.G. & Taylor, H.F.W. (1969) Thermal decomposition of sjögenite and pyroaurite. Chimia, 23, 480 485.Google Scholar
Roy, D.M., Roy, R. & Osborn, E.F. (1953) The system MgO-Al2O3-H2O and influence of carbonate and nitrate ions on the phase equilibria. Am. J. Sci., 251, 337 361.CrossRefGoogle Scholar
Sato, T., Fujita, H., Endo, T. & Shimada, M. (1988) Synthesis of hydrotalcite-like compounds and their physicochemical properties. React. Solids, 5, 219–228.CrossRefGoogle Scholar
Schilt, A.S. (1969) Analytical Applications of 1,10-Phenanthroline and Related Compounds,pp. 56 59. Pergamon Press, Oxford.Google Scholar
Schwertmann, U. & Taylor, R.M. (1989) Soil iron oxides. Ch. 8 in: Minerals in Soil Environments(2nd Edition). (R.C. Dinauer, J.B. Dixon & S.B. Weed, editors). Soil Sci. Soc. Am.(in press).Google Scholar
Serna, C. J., White, J.L. & Hem, S.L. (1977) Hydrolysis of aluminum-tri-(sec-butoxide) in ionic and nonionic media. Clays Clay Miner., 25, 384–391.CrossRefGoogle Scholar
Sillen, L.G. & Martell, A.E. (1964) Stability Constants of Metal-Ion Complexes.Spec. Publ. No 17. The Chem. Soc., London.Google Scholar
Tamaura, Y. (1985) New ferrite-formation in the suspensions of y-FeOOH and "green rust II". Adv. Cer., 15, 87 92.Google Scholar
Taylor, H.F.W. (1973) Crystal structures of some double hydroxide minerals. Mineral. Mag., 39, 377 389.CrossRefGoogle Scholar
Taylor, R.M. (1980) Formation and properties of Fe(II)Fe(III) hydroxy-carbonate and its possible significance in soil formation. Clay Miner., 15, 369 382.CrossRefGoogle Scholar
Taylor, R.M. (1984) The rapid formation of crystalline double hydroxy salts and other compounds by controlled hydrolysis. Clay Miner., 19, 591 603.CrossRefGoogle Scholar
Taylor, R.M., Schwertmann, U. & Fechter, H. (1985) A rapid method for the formation of Fe(II)Fe(III) hydroxy carbonate. Clay Miner., 20, 147–151.CrossRefGoogle Scholar
Taylor, R.M. & McKenzie, R.M. (1980) The influence of aluminum on iron oxides. VI. The formation of Fe(II)-Al(III) hydroxy-chlorides, -sulfates, and -carbonates as new members of the pyroaurite group and their significance in soils. Clays Clay Miner., 28, 179–187.Google Scholar
Taylor, R.M., Maher, B.A. & Self, P. (1987) Magnetite in soils: I. The synthesis of single domain and superparamagnetic magnetite. Clay Miner., 22, 411 422.CrossRefGoogle Scholar
Thevenot, F., Szymanski, R. & Chaumette, P. (1989) Preparation and characterization of Al-rich Zn-Al hydrotalcite-like compounds. Clays Clay Miner., 37, 396–402.CrossRefGoogle Scholar
Thornber, M.R. (1975) Supergene alteration of sulphides I. A chemical model based on massive nickel sulphide deposits at Kambalda, Western Australia. Chem. Geol., 25, 1–14.Google Scholar
Ulibarri, M.A., Hernandez, M.J. & Correjo, J. (1987) Changes in textural properties derived from the thermal decomposition of synthetic pyroaurite. Thermochim. Acta, 113, 79–86.CrossRefGoogle Scholar
White, J.S. Jr., Henderson, E.P. & Mason, B. (1967) Secondary minerals produced by weathering of the Wolf Creek Meteorite. Am. Miner., 52, 1190–1197.Google Scholar