Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-20T00:48:42.318Z Has data issue: false hasContentIssue false

Formation of illitic minerals at surface temperatures in Purbeckian sediments (Lower Berriasian, Swiss and French Jura)

Published online by Cambridge University Press:  09 July 2018

J. F. Deconinck
Affiliation:
Laboratoire de Dynamique Sédimentaire et Structurale et U. A. 719 C.N.R.S., U.F.R. des Sciences de la Terre, Université de Lille 1, 59655 Villeneuve d'Ascq Cedex, France
A. Strasser
Affiliation:
Département de Géologie et de Paléontologie, Universié de Genève, 13 rue des Maraîchers, 1211 Genève 4, Switzerland
P. Debrabant
Affiliation:
Laboratoire de Dynamique Sédimentaire et Structurale et U. A. 719 C.N.R.S., U.F.R. des Sciences de la Terre, Université de Lille 1, 59655 Villeneuve d'Ascq Cedex, France

Abstract

The clay-mineralogical assemblages of Purbeckian carbonate sediments of the Swiss and French Jura Mountains are often composed of illite and interstratified illite-smectite. These illitic minerals occur mainly in thin layers of green marls which show evidence of subaerial exposure and mark the top of shallowing-upward sequences. X-ray diffraction, chemical and thermal analyses coupled with transmission electron microscopy suggest that the Purbeckian illitic minerals replaced smectite in intermediate continental-marine environments. The transition from smectite to illite and interstratified illite-smectite probably resulted from repeated cycles of wetting by marine waters and subsequent drying in hypersaline environments, under a hot Purbeckian climate.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brown, G. Brindley, G.W. (1980) X-ray diffraction procedures for clay mineral identification. Pp. 305359 in: Crystal Structures of Clay Minerals and their X-ray Identification (Brindley, G. W. Brown, G., editors). Mineralogical Society, London.CrossRefGoogle Scholar
Chantret, F., Desprairies, A., Douillet, P.; Jacob, C., Steinberg, M. Trauth, N. (1971) Révision critique de Tutilisation des methodes thermiques en sédimentologie: cas des smectites, (montmorillonite). Bull. Gr. Fr. Arg. 23, 141–172.Google Scholar
Clavel, B., Charollais, J., Busnardo, R. Le Hegarat, G. (1986) Précisions stratigraphiques sur le Crétacé inférieur basal du Jura meridional. Eclogae geol. Heiv. 79/2, 319341.Google Scholar
Debrabant, P., Delbart, S. Lemaguer, D. (1985) Microanalyses géochimiques de mineraux argileux de sédiments prélevés en Atlantique-Nord (forages du D.S.D.P.) Clay Miner. 20, 125145.Google Scholar
Decarreau, A., Sautereau, J.P. Steinberg, M. (1975) Genése des mineraux argileux du Bartonien moyen du Bassin de Paris. Bull. Soc. franç. Mineral. Cristallogr. 98, 142–151.Google Scholar
Deconinck, J.F. (1984) Sédimentation et diagenése des minéraux argileux du Jurassique supérieur-Crétacé dans le Jura meridional et le domaine subalpin (France Sud∼Est). Comparaison avec le domaine Atlantique-Nord. These 3e cycle, Univ. Lille, France, 150 pp.Google Scholar
Deconinck, J.F. (1987) Mineraux argileux des faciés purbeckiens Jura suisse et fran5ais, Dorset (Angleterre) et Boulonnais (France). Ann. Soc. geol. Nord, CVI, 285–297.Google Scholar
Deconinck, J.F. Strasser, A. (1987) Sedimentology, clay mineralogy and depositional environment of Purbeckian green marls (Swiss and French Jura). Eclogae géol. Helv. 80, 753–772.Google Scholar
Deer, W.A., Howie, R.A. Zussman, J. (1963) Rock-Forming Minerals 3, Sheet Silicates, pp. 213225. Longmans, London.Google Scholar
Dunoyer de Segonzac, G. (1970) The transformation of day minerals during diagenesis and low-grade metamorphism: a review. Sedimentology 15, 281–346.Google Scholar
Eberl, D.D., Srodon, J. Northrop, H.R. (1986) Potassium fixation in smectite by wetting and drying. Pp. 296326 in: Geochemical processes at mineral surfaces (J. A. Davis K. F. Hayes, editors). Am. Chem, Soc. Symposium series 323/14.Google Scholar
Esteoule-Choux, J. (1984) Palygorskite in the Tertiary deposits of the Armorican massif. Dev. Sedimentol. 37, 75-85.CrossRefGoogle Scholar
Francis, J.E. (1984) The seasonal environment of the Purbeck (Upper Jurassic) fossil forests. Palaeogeog, Palaeoclim. Palaeoecol. 48, 285–307.CrossRefGoogle Scholar
Gabis, V. (1963) Etude mineralogique et géochimique de la serie sédimentaire oligocène du Velay. Bull. Soc. frang. Mineral. Cristallogr. 86, 315–354.Google Scholar
Grim, R.E. (1968) Clay Mineralogypp. 278352. McGraw-Hill, New York.Google Scholar
Grim, R.E. Kulbicki, G. (1957) Etude des reactions de hautes températures dans les minéraux argileux au moyen des rayons X. Bull. Soc. Frang. Ceram. 36, 21–28.Google Scholar
Holtzapffel, T. (1985) Les mineraux argileux. Préparation, analyse diffractometrique et détermination. Soc. geol. Nord. Publ. no. 12, 136 pp.Google Scholar
Hower, J., Eslinger, E., Hower, M. Perry, E. (1976) Mechanism of burial metamorphism of argillaceous sediment. 1. Mineralogical and chemical evidence. Geol. Soc. Am. Bull. 87, 725–737.2.0.CO;2>CrossRefGoogle Scholar
Jung, J. (1954) Les illitesdu bassin oligocene de Salins (Cantal). Bull. Soc.frang. Mineral. Cristallogr. 72, 1231–1249.Google Scholar
Keller, W.D. (1958) Glauconitic mica in the Morrison Formation in Colorado. Clays Clay Miner. (5th Nat. Conf. Mexico City, 1956), 120128.Google Scholar
Kisch, H.J. (1983) Mineralogy and petrology of burial diagenesis (burial metamorphism) and incipient metamorphism in clastic rocks. Dev. Sedimentol. 25/2, 289–494.Google Scholar
Kossovskaya, A.G. Drits, V.A. (1970) The variability of micaceous minerals in sedimentary rocks. Sedimentology 15, 83–101.CrossRefGoogle Scholar
Kubler, B. (1964) Les argiles, indicateurs de metamorphisme. Rev. Inst. Fr. Petrol. 19, 1093–1112.Google Scholar
Lucas, J. & Trauth, N. (1965) Etude du cxjmportement des montmorillonites a haute temperature. Bull. Serv. Carte geol. Als. Lorr. 18/4, 217–242.Google Scholar
Mamy, J. Gaultier J.P. (1975) Etude de l'evolution de Tordre cristallin dans la montmorillonite en relation avec la diminution de l’échangeabilité du potassium. Proc. Int. Clay Conf. Mexico City, 149-155,Google Scholar
Millot, G. (1964) Geologie des Argiles. Alteration, Sedimentologie, Geochimie, pp. 352375. Masson, Paris.Google Scholar
Parry, W.T. Reeves, C.C. (1966) Lacustrine glauconitic mica from pluvial Lake Mound, Lynn and Terry Counties, Texas. Am. Miner. 51, 229-235.Google Scholar
Perry, E.D. Hower, J. (1970) Burial diagenesis in Gulf Coast pelitic sediments. Clays Clay Miner. 18, 165–177.Google Scholar
Persoz, F. (1982) Inventaire mineralogique, diagenese des argiles et mineralostratigraphie des series jurassiques et cretacees inferieures du plateau suisse et de la bordure sud-est du Jura entre les lacs d'Annecy et de Constance. Mat. Carte geol. Suisse (N. S.) no. 155, 52 pp.Google Scholar
Persoz, F. Remane, J. (1976) Mineralogie et geochimie des formations a la limite Jurassique-Cretace dans le Jura et le bassin vocontien. Eclogae geol. Helv. 69/1, 138.Google Scholar
Porrenga, D.H. (1968) Non-marine glauconitic illite in the Lower Oligocene of Aardenburg, Belgium. Clay Miner. 7, 421–430.CrossRefGoogle Scholar
Reynolds, R.C. (1980) Interstratified clay minerals. Pp. 249303 in: Crystal Structures of Clay Minerals and their X-ray Identification (Brindley, G. W. Brown, G., editors). Mineralogical Society, London.Google Scholar
Robinson, D. Wright, V.P. (1987) Ordered illite-smectite and kaolinite-smectite: pedogenic minerals in a Lower Carboniferous paleosol sequence, South Wales? Clay Miner. 22, 109–118.Google Scholar
Singer, A. Stoffers, P. (1980) Clay mineral diagenesis in two East African lake sediments. Clay Miner. 15, 291–307.Google Scholar
Srodon, J. Eberl, D.D. (1984) Illite. Pp. 495544 in: Reviews in Mineralogy. Micas (S. W. Bailey, editor). Mineralogical Society of America 13, Washington, USA.Google Scholar
Strasser, A. (1986) Ooids in Purbeck limestones (lowermost Cretaceous) of the Swiss and French Jura. Sedimentology 33, 711–727.CrossRefGoogle Scholar
Strasser, A. (1988) Shallowing-upward sequences in Purbeckian peritidal carbonates (Lowermost Cretaceous, Swiss and French Jura Mountains). Sedimentology (in press).Google Scholar
Trumpy, R. (1980) Geology of Switzerland, Part A: An Outline of the Geology of Switzerland. Wepf & Co, Basel.Google Scholar
Watts, N.L. (1980) Quaternary pedogenic calcretes from the Khalahari (southern Africa): mineralogy, genesis and diagenesis. Sedimentology 27, 661–686.CrossRefGoogle Scholar
Weaver, C.E. Pollard, L.D. (1973) The chemistry of clay minerals. Dev. Sedimentol. 15, 5–23.Google Scholar