Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-27T01:24:24.545Z Has data issue: false hasContentIssue false

Fixation du lithium en traces dans une phengite de synthèse

Published online by Cambridge University Press:  09 July 2018

P. Maurel
Affiliation:
C.N.R.S. Centre de Synthese et Chimie des Mineraux, Rue de la Férollerie, 45045 Orleans-Cedex
M. Volfinger
Affiliation:
C.N.R.S. Centre de Synthese et Chimie des Mineraux, Rue de la Férollerie, 45045 Orleans-Cedex

Résumé

On effectue la synthèse hydrothermale d'une phengite à partir d'un gel de composition 90% muscovite-10% céladonite, en présence de chlorure de lithium, à 500°C, 1000 bars. Le produit final obtenu contient environ 2000 ppm de Li. L'étude de la cinétique de la dissolution, en milieu HCl 2·4 n, des éléments majeurs et du lithium montre que 33% du lithium sont très faiblement liés au mica et vraisemblablement adsorbés. Ce qui reste de Li entre en substitution isomorphique dans le réseau de la phengite, sans doute en sites octaédriques.

Abstract

Abstract

Hydrothermal synthesis ofa phengite was carried out at 500°C, 1000 bars, in a lithium chloride solution. The starting material was a gel the composition of which corresponded to muscovite 90%-celadonite 10% The amount of Li of this synthetic phengite was about 2000 ppm. A kinetic study of the dissolution of major elements and lithium by HCl 2·4 n showed that a part of Li (33%) is very weakly bounded to the mica, probably adsorbed, and the other part (67%) is substituted isomorphically in the lattice of the phengite, probably into octahedral sites.

Kurzerferat

Kurzerferat

Hydrothermische Synthese eines Phengits wurde bei einer Temperatur von 500°C und einem Druck von 1000 bar in einer Lithiumchloridlösung durchgeführt. Das Ausgangsmaterial bildete ein Gel, dessen Zusammensetzung der von 90% Muscovit und 10% Seladonit entsprach. Die Li-Menge in diesem synthetischen Phengit belief sich auf rund 2000 ppm. Eine kinetische Untersuchung der Auflösung wichtigerer Elemente und von Lithium durch HCl 2·4 n erwies, dass ein Teil des Li (33%) sehr schwach mit dem Glimmer verbunden und wahrscheinlich daran adsorbiert wird; der Rest (67%) wird in dem Phengitgitter isomorph substituiert, wahrscheinlich in oktaedrische Bereiche.

Resumen

Resumen

Se ha efectuado la sintesis hidrotérmica de una fengita a 500°C 1000 bares, en una solución de cloruro de litio. El material de partida era un gel, cuya composición correspondia a muscovita 90%-celadonita 10%. La cantidad de Li de esta fengita sintética era de alrededor de 2000 ppm. Un estudio cinético de la disolución de los elementos principales y el litio por el HCI 2·4 n indicó que una parte del Li (33%) está enlazada muy débilmente con la mica, probablemente adsorbida, y la otra parte (67%) es sustituída isomórficamente en la red de la fengita, probablemente en sitios octaédricos.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1977

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bibliographie

Arvieu, J.C. & Chaussidon, J. (1964) Ann. Agron. 15, 207.Google Scholar
Brindley, G.W. & Youell, R.F. (1951) Acta cryst. 4, 495.Google Scholar
Brown, G. (1961) The X-ray Identification and Crystal Structures of Clay Minerals. Mineralogical Society, London.Google Scholar
Cloos, P., Gastuche, M.C. & Croegaert, M. (1960) Intern. Geol. Congr., 21 sr, Rept Session, Nordem, p. 24, 35.Google Scholar
Fleischer, M. (1969) Geochim. cosmochim. Act. 33, 65.Google Scholar
Gastuche, M.C, Delmon, B. & Vielvoye, L. (1960) Bull. Soc. Chim. Franc. 1, 60.Google Scholar
Grim, R.E. (1968) Clay Minerology. McGraw-Hill, New York.Google Scholar
Hamilton, D.L. & Henderson, C.M.B. (1968) Miner. Mag. 36, 832.Google Scholar
Kennedy, G.C. (1950) Am. J. Se. 248, 540.Google Scholar
Maurel, P. (1975) Bull. Soc.fr. Miner. Cristallog. 98, 354.Google Scholar
Osthaus, B.B. (1954) Clays Clay Miner. 3, 404.Google Scholar
Osthaus, B.B. (1956) Clays Clay Miner. 4, 301.CrossRefGoogle Scholar
Roux, J., Volfinger, M., Lagache, M., Iiyama, J.T., Sabatier, G. & Wyart, J. (1971) Miner. Soc. Japan, Spec. Pap. 1, 214. Proc. IMA-IAGOD Meetings 70, IMA vol.Google Scholar
Shapiro, L. (1967) U.S. Geol. Surv. Prof. Paper, 575B, 187.Google Scholar
Velde, B. (1965) Am. J. Sci. 263, 886.CrossRefGoogle Scholar
Weaver, CE. & Pollard, L.D. (1973) The Chemistry of Clay Minerals. Elsevier Scientific Publishing Company.Google Scholar