Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T05:51:09.175Z Has data issue: false hasContentIssue false

Firing transformations of a carbonatic clay from the High–Atlas, Morocco

Published online by Cambridge University Press:  09 July 2018

Abstract

The firing transformations of a Triassic calcareous clay were investigated, in the range 800 –1075ºC, by using X-ray diffraction and by measuring some ceramic properties (linear shrinkage, density and porosity). It was found that gehlenite and wollastonite are the only neoformed crystalline phases, when anorthite is also expected. The occurrence of these phases is discussed, emphasizing the role of the activity of free silica and calcite concentration. Moreover, new reaction paths for anorthite and wollastonite are envisaged.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Biron, P.E. (1982) Le Permo-Trias de la région de l’Ourika (Haut-Atlas de Marrakech, Maroc)Lithostatigraphie, sédimentologie, tectonique et minéralisations. Thesis (Doctorat de 3ème cycle), Université Scientifique et Médicale de Grenoble, Grenoble, France.Google Scholar
Boulmane, M. (1998) Caractérisation minéralogique d’argiles marocaines et propriétés physico-chimiques de tessons. Thesis (Doctorat de 3 ème cycle), Faculté des Sciences Semlalia, Marrakech, Morocco.Google Scholar
Champion, P., Guillet, L. and Poupeau Ph. (1981) Diagrammes de Phases des Matériaux Cristallins, 2nd edition. p. 216, Masson, Paris.Google Scholar
Dondi, M., Guarini, G. and Raimondo, M. (1999) Trends in the formation of crystalline and amorphous phases during the firing of clay bricks. Tile & Brick International, 15, 176183.Google Scholar
Driouiche, H. (1983) Prospection des argiles kaoliniques dans la région de Tassaout (Haut-Atlas). Rapport No 48, Délégation Régionale de Marrakech – Service Régional de la Géologie (Ministère de l’Energie et des Mines – Morocco).Google Scholar
Hajjaji, M., Kacim, S. and Boulmane, M. (2002) Mineralogy and firing characteristics of a clay from the valley of Ourika (Morocco). Applied Clay Science, 21, 203212.Google Scholar
Jordán, M.M., Sanfeliu, T. and de la Fuente, C. (2001) Firing transformation of Tertiary clays used in the manufacturing of ceramic tile bodies. Applied Clay Science, 20, 8795.CrossRefGoogle Scholar
Mackenzie, M.C. and Rahmann, A.A. (1987) Interaction of kaolinite with calcite on heating, I. Instrumental and procedural factors for one kaolinite in air and nitrogen. Thermochimica Acta, 121,51 – 69.CrossRefGoogle Scholar
Mackenzie, M.C., Rahmann, A.A. and Moir, H.M. (1988) Interaction of kaolinite with calcite on heating, II. Mixtures with one kaolinite in carbon dioxide. Thermochimica Acta, 124, 119127.CrossRefGoogle Scholar
Maniatis, Y., Simopoulos, A. and Kostikas, A. (1983) Effect of reducing atmosphere on minerals and iron oxides developed in fired clays: the role of Ca. Journal of American Ceramic Society, 66, 773781.CrossRefGoogle Scholar
Murad, E. and Wagner, U. (1989) Pure and impure clays and their firing products. Hyperfine Interactions, 45, 161177.CrossRefGoogle Scholar
Parras, J., Sánchez, C., Barrenechea, J.F., Luque, F.J., Rodas, M. and Mas, J.R., (1996) Clay materials from Cameros basin (NE Spain) and their possible ceramic uses. Advances in Clay Minerals, 233235.Google Scholar
Peters, T. and Iberg, R. (1978) Mineralogical changes during firing of calcium-rich brick clays. American Ceramic Society Bulletin, 57, 503505. 509.Google Scholar
Piponnier, D., Bechtel, F., Florin, D., Molera, J. and Vendrell, M. (1997) Apport de cathodoluminescence à l’étude des transformations de phases cristallines dans des céramiques kaolinitiques carbonatées. Key Engineering Materials, 132136, 14701473.Google Scholar
Riccardi, M.P., Messiga, B. and Duminoco, P. (1999) An approach to the dynamics of clay firing. Applied Clay Science, 15, 393409.Google Scholar
Traoré, K., Kabré, T.S. and Blanchart, P. (2000) Low temperature sintering of a pottery clay from Burkina Faso. Applied Clay Science, 17, 279292.Google Scholar