Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-09T13:43:00.109Z Has data issue: false hasContentIssue false

Experimental study of swelling in unsaturated compacted clays

Published online by Cambridge University Press:  09 July 2018

N. Saiyouri*
Affiliation:
Institut de Recherche en Génie Civil et Mécanique, CNRS UMR 6183, Ecole Centrale de Nantes–Université de Nantes, 44321 Nantes Cedex 3
D. Tessier
Affiliation:
INRA, Station de Science du Sol, Route de Saint Cyr, 78026 Versailles Cedex, France
P. Y. Hicher
Affiliation:
Institut de Recherche en Génie Civil et Mécanique, CNRS UMR 6183, Ecole Centrale de Nantes–Université de Nantes, 44321 Nantes Cedex 3
*

Abstract

This paper describes the swelling properties of two highly compacted clays, natural, untreated Wyoming montmorillonite (MX80) and Fourges smectite (FoCa7), saturated with Na and Ca, respectively.

The initially compacted samples were hydrated by subjecting them to different suction pressures in a range between 100 MPa and 1 kPa. For each equilibrium state, the volume change (swelling) and water content (hydration) were measured. The samples were then studied by X-ray diffraction using a transmission device to determine interlayer distance and particle size, in order to clarify both the swelling and hydration mechanisms. The distances between clay layers ranged between 10 and 21.6 Å , i.e. corresponding to between 0 and 4 water layers. Upon hydration, the particle size decreased from 350 and 100 clay layers per particle to 10 layers per particle when the suction pressure decreased from 100 MPa to 1 kPa for MX80 and FoCa7, respectively. The first swelling stage is described as being an insertion of water molecules between the layers. Then a division of the initial particles into particles of smaller size with increasingly large inter-particle distances was observed. Observations by transmission electronic microscopy confirmed these results.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

AFNOR (1994) Qualité des Sols. Recueil de normes françaises. AFNOR, Paris.Google Scholar
Aylmore, L.A.G. & Quirk, J.P. (1962) The structural status of clay systems. Clays and Clay Minerals, 9, 104–130.Google Scholar
Ben Rhaïem, H., Pons, C.H. & Tessier, D. (1987) Factors affecting the microstructure of smectites. Role of cation and history of applied stresses. Pp. 292—297 in: Proceedings of the International Clay Conference, Denver, 1985 (Schultz, L.G., Van Olphen, H. & Mumpton, F.A., editors). The Clay Minerals Society, Bloomington IN.Google Scholar
Bruno, G. (1993) Etude expérimental des mécanismes de réduction et d'oxydation du Fer d'une argile naturelle—Evolution de ses propriétés physiques et chimiques. PhD thesis, Univ. Poitiers, France.Google Scholar
Ciesielsky, H., Sterckeman, T., Santerne, M. & Willery, J.P. (1997) Determination of cation exchange capacity and exchangeable cations in soils by means of Cobalt Hexamine Trichloryde. Effects of experimental conditions. Agronomy, 17, 1 —9.Google Scholar
Coulon, H. (1987) Propriétés physico-chimiques des sédiments argileux franqais: Application au stockage des déchets radioactifs. PhD thesis, Univ. Lille, France.Google Scholar
Delville, A. & Laszlo, P. (1990) The origin of the swelling of clays by water. Langmuir, 7, 1289–1294.Google Scholar
Elsass, F., Beaumont, A., Pernes, M., Jaunet, A.M. & Tessier, D. (1998) Changes in layer organisation of Na- and Ca-exchanged smectite during solvent exchanges for embedment in resin. The Canadian Mineralogist, 36, 1475–1483.Google Scholar
Gin, S., Jollivet, P., Mestre, J.P., Jullien, M. & Pozo, C. (2001) French SON 68 nuclear glass on alteration mechanisms contact with clay media. Applied Geochemistry, 16, 861–881.Google Scholar
Heilman, M.D., Carter, D.L. & Gonzalez, C.L. (1965) The Ethylene Glycol Monoethyl Ether EGME technique for determining soil-surface area. Soil Science, 100, 409413.Google Scholar
Inigo, A.C., Tessier, D. & Pernes, M. (2000) Use of X-ray transmission diffractometry for the study of clayparticle orientation at different water contents. Clays and Clay Minerals, 48, 682–692.Google Scholar
Kassif, G. & Ben Shalom, A. (1971) Experimental relationship between swell pressure and suction. Geotechnique, 21, 245–255.Google Scholar
Kim, J.M., Peacor, D.R., Tessier, D. & Elsass, F. (1995) A technique for maintaining texture and permanent expansion of smectite interlayer spacings for TEM observations. Clays and Clay Minerals, 43, 51–57.CrossRefGoogle Scholar
Kjellander, R., Marcelja, S. & Quirk, J.P. (1988a) Attractive double-layer interactions between calcium clay particles. Journal of Colloid and Interface Science, 126, 194211.Google Scholar
Kjellander, R., Marcelja, S., Pashley, R.M. & Quirk, J.P. (1988b) Double-layer ion correlation forces restrict Calcium-clay swelling. Journal of Physical Chemistry, 92, 6489–6492.Google Scholar
Marcoen, J.M. & Tessier, D. (1991) Critères de selection des argiles comme barrieres anti-pollution. Pp. 11—19 in: Aspects ïconomiques de la gestion et du traitement des déchets ménagers et industriels. Environnement et Société, Fondation Universitaire Luxembourgeoise.Google Scholar
Mering, J. (1946) Sur le processus de Phydratation de la montmorillonite. Transactions of the Faraday Society, 42B, 205219.CrossRefGoogle Scholar
Norrish, K. (1954) The swelling of montmorillonite. Faraday Society Discussion, 18, 120–134.Google Scholar
Pons, C.H. (1980) Mise en évidence des relations entre la texture et la structure dans les systèmes eau-smectite par diffusion aux petits angles du rayonnement X synchrotron. PhD thesis, Univ. Orleans, France.Google Scholar
Pons, C.H., Rousseaux, F. & Tchoubar, D. (1981) Utilisation du rayonnement synchrotron en diffusion aux petits angles pour l'étude du gonflement des smectites. I: Etude du systeme eau-montmorillonite- Na en fonction de la temperature. Clay Minerals, 16, 2342.Google Scholar
Pons, C.H., Tessier, D., Ben Rhaïem, H. & Tchoubar, D. (1982) A comparison between X-ray studies and electron microscopy observations of smectite fabric. Pp. 177—183 in: Proceedings of the International Clay Conference (Van Olphen, H. & Veniale, F., editors). Developments in Sedimentology, 35. Elsevier, Amsterdam.Google Scholar
Saiyouri, N. (1996) Approche microstructurale et modélisation des transferts d'eau et du gonflement dans les argiles non saturées. PhD Thesis, Ecole Centrale de Paris, France.Google Scholar
Saiyouri, N., Hicher, P.Y. & Tessier, D. (2000) Microstructural approach and transfer water modelling in highly compacted unsaturated swelling clays. Mechanics of Cohesive-Frictional Materials, 5, 41–60.Google Scholar
Suquet, H. (1978) Propriétés de gonflement et de structure de la saponite. Comparaison avec la vermiculite. PhD thesis, Univ. Paris VI, France.Google Scholar
Tessier, D. (1975) Recherches expérimentales sur I'organisation des particules dans les Argiles. Engineering thesis, Conservatoire National des Arts et Metiers, Paris.Google Scholar
Tessier, D. (1978) Etude de Porganisation des argiles calciques. Evolution au cours de la desiccation. Annales d'Agronomie, 29, 319–355.Google Scholar
Tessier, D. (1984) Etude expérimental de I'organisation des matériaux argileux. PhD thesis, Univ. Paris 7, Institut National de la Recherche Agronomique, Paris, France.Google Scholar
Tessier, D. (1991) Behaviour and micro structure of clays minerals. Pp. 387—415 in: Soil Colloids and their Associations in Aggregates (de Boodt, M., Hayes, M. & Herbillon, A., editors). Plenum Press, New York.Google Scholar
Tessier, D. & Berrier, J. (1979) Utilisation de la microscopie électronique à balayage dans l'étude des sols. Observation des sols humides soumis a différents pF. Sciences du Sol, 1, 67–82.Google Scholar
Tessier, D. & Pédro, G. (1987) Mineralogical characterization of 2:1 clays in soils: Importance of the clay texture. Pp. 78—84 in: Proceedings of the International Clay Conference, Denver 1985 (Schultz, L.G., Van Olphen, H. & Mumpton, F.A., editors). The Clay Minerals Society, Bloomington IN.Google Scholar
Tessier, D., Lajudie, A. & Petit, J.C. (1992) Relation between the macroscopic behavior of clays and their micro structural properties. Applied Geochemistry, Supplementary Issue, 1, 151–161.Google Scholar
Tessier, D., Dardaine, M., Beaumont, A. & Jaunet, A.M. (1998) Swelling pressure and microstructure of an activated swelling clay with temperature. Clay Minerals, 33, 255–267.CrossRefGoogle Scholar
Warkentin, B.P., Bolt, G.H. & Miller, R.D. (1957) Swelling pressure of montmorillonite. Soil Science Society Proceedings, 21, 495–497.Google Scholar
Yong, R.N. (1999) Soil suction and soil-water potentials in swelling clays in engineered clay barriers. Engineering Geology, 54, 3–13.Google Scholar
Yong, R.N., Taylor, L.O. & Warkentin, B.P. (1963) Swelling pressure of sodium montmorillonite at depressed temperatures. Proceedings of the 11th National Conference, Clays and Clay Minerals, 2, 268-281.Google Scholar