Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T15:34:17.941Z Has data issue: false hasContentIssue false

Evaluation of selective dissolution extractants in soil chemistry and mineralogy by differential X-ray diffraction

Published online by Cambridge University Press:  09 July 2018

A. S. Campbell
Affiliation:
Institut fur Bodernkunde, Technische Universität München, 8050 Freising-Weihenstephan, FRG
U. Schwertmann
Affiliation:
Institut fur Bodernkunde, Technische Universität München, 8050 Freising-Weihenstephan, FRG

Extract

Selective dissolution analysis is widely used to separate various soil minerals (e.g. oxides and oxyhydroxides of Al and Fe, allophanes, phyllosilicates) from each other. Although a wide variety of reagents has been used for some of these determinations, few rigorous comparative studies have been attempted. Too often, reagents used to extract particular soil components are evaluated using geological or other specimens that may bear little resemblance to soil minerals formed by pedogenic processes; the investigations of Borggaard (1982) and Chao & Zhou (1983) are two recent examples of such an approach. Insufficient use has been made of difference infrared spectra (Wada & Greenland, 1970) obtained from soil samples.

Type
Notes
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Borggaard, O.K. (1982) Selective extraction of amorphous iron oxides by EDTA from selected silicates and mixtures of amorphous and crystalline iron oxides. Clay Miner. 17, 365368.CrossRefGoogle Scholar
Brown, G. (1980) Associated minerals. Pp. 3614l0 in: Crystal Structures of Clay Minerals and their X-ray Identification (Brindley, G. W. & Brown, G., editors). Mineralogical Society, London.CrossRefGoogle Scholar
Bryant, R.B., Curi, N., Roth, C.B. & Franzmeier, D.P. (1983) Use of an internal standard with differential X-ray diffraction analysis for iron oxides. Soil Sci. Soc. Am. J. 47, 168173.CrossRefGoogle Scholar
Campbell, A.S. & Schwertmann, U. (1984) Iron oxide mineralogy of placic horizons. J. Soil Sci. 35, 569582.CrossRefGoogle Scholar
Chao, T.T. & Zhou, Liyi (1983) Extraction techniques for selective dissolution of amorphous iron oxides from soils and sediments. Soil Sci. Soc. Am. J. 47, 225232.CrossRefGoogle Scholar
Higashi, T., De Coninck, F. & Gelaude, F. (1981) Characterization of some spodic horizons of the Campine (Belgium) with dithionite-citrate, pyrophosphate and sodium hydroxide-tetraborate. Geoderma 25, 131142.CrossRefGoogle Scholar
McKeague, J.A., Brydon, J.E. & Miles, N.M. (1971) Differentiation of forms of extractable iron and aluminium in soils. Soil Sci. Soc. Am. Proc. 35, 3338.CrossRefGoogle Scholar
Mehra, O.P. & Jackson, M.L. (1960) Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clays Clay Miner. 7, 317327.CrossRefGoogle Scholar
Schwertmann, U. (1959) Die fraktionierte Extraktion der freien Eisenoxide in Böden, ihre mineralogischen Formen und ihre Entstehungsweisen. Z. Pflanzenernähr., Düng., Bodenkunde 84, 194204.CrossRefGoogle Scholar
Schwertmann, U. (1964) Differenzierung der Eisenoxide des Bodens durch photochemische Extraktion mit saurer Ammoniumoxalat-Lösung. Z. Pflanzenernähr., Düng., Bodenkunde 105, 194202.CrossRefGoogle Scholar
Schwertmann, U., Schulze, D.G. & Murad, E. (1982) Identification of ferrihydrite in soils by dissolution kinetics, differential X-ray diffraction and Mössbauer spectroscopy. Soil Sci. Soc. Am. J. 46, 869875.CrossRefGoogle Scholar
Schulze, D.G. (198l) Identification of soil iron oxide minerals by differential X-ray diffraction. Soil Sci. Soc. Am. J. 45, 437440.CrossRefGoogle Scholar
Staff, New Zealand Soil Bureau, Department of Scientific and Industrial Research, Department of Agriculture & Forest Service (1968) Hygrous to Hydrous Brown Granular Loams and Clays. Pp 6263 in: General Survey of the Soils of South Island, New Zealand. N. Z. Soil Bureau Bulletin 27. Government Printer, Wellington.Google Scholar
Wada, K. & Greenland, D.J. (1970) Selective dissolution and differential infrared spectroscopy for characterization of ‘amorphous’ constituents in soil clays. Clay Miner. 8, 241254.CrossRefGoogle Scholar
Yoshinaga, N. & Aomine, S. (1962) Allophane in some Ando soils. Soil Sci. and Pl. Nutrition 8, 613.CrossRefGoogle Scholar
Young, A.W. (1980) A Catena of Soils on Bealey Spur. Pp. 5051 in: Guide Book for Tour 2, South Island. Soils with Variable Charge Conference, Palmerston North, New Zealand. Government Printer, Wellington.Google Scholar
Young, A.W., Campbell, A.S. & Walker, T.W. (1980) Allophane isolated from a podzol developed on non-vitric parent material. Nature 284, 4648.CrossRefGoogle Scholar