Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T16:17:34.421Z Has data issue: false hasContentIssue false

Etude du systeme eau-vermiculite dans le proche infrarouge

Published online by Cambridge University Press:  09 July 2018

V. Fornes*
Affiliation:
Seccion de Fisico-Quimica Mineral, Serrano 115, dup, Madrid 6, Espagne

Résumé

On étudie l'influence des cations compensateurs sur le spectre P.I.R. d'une vermiculite hydratée à deux couches. La définition d'un paramètre IR permet de quantifier cet effet. On conclue que l'énergie d'hydratation du cation est en relation avec la rigidité de la couche interfoliaire.

Abstract

Abstract

The influence of the interlayer cation on the near I.R. spectrum of a two-water layer vermiculite is studied. This effect can be quantified by the definition of a parameter IR. It has been shown that the cation hydration energy is related to the rigidity of the interlayer space.

Kurzreferat

Kurzreferat

Es wird der Einfluß des Zwischenschicht-Kations auf das nahe I.R. Spektrum eines Zweiwasserschicht-Vermiculits untersucht. Dieser Effekt kann durch Definition eines Parameters IR zahlenmäßig ausgedrückt werden. Es wurde erwiesen, daß die Kationenhydrationsenergie zu der Steifheit des Zwischenschichtraumes in Beziehung steht.

Resumen

Resumen

Se estudia la influencia del catión de interestratificación en el espectro próximo al infrarrojo de una vermiculita con dos capas de agua. Este efecto puede cuantificarse por la definición de un parámetro IR. Se ha demostrado que la energía de hidratación de los cationes guarda relación con la rigidez del espacio entre capas.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bibliographie

Bonner, O.D. & JUMPER CH. F. (1973) Infrared Phys. 13, 233.Google Scholar
Brown, I.D. (1976) Ada Cryslallogr. A 32, 24.Google Scholar
Buns, K & Choppin, G.R. (1963) J. chem. Phys. 39, 2035.Google Scholar
Choppin, G.R. & Buus, K (1863) J. chem. Phys. 39, 2042.Google Scholar
Fornès, V & Chaussidon, J (1975) Proc. 5th. Int. Clay Conf. Mexico, p 383.Google Scholar
Fornès, V & Chaussidon, J (1978) J . chem. Phys. 68, 4667.Google Scholar
Frank, H.S. & EVan s, M (1945) J. chem. Phys. 13, 507.Google Scholar
Friedman, H.L. & Krishnan, C.V. (1973) Water: A Comprehensive Treatise (H.S. Franks, editor) 3, p. 55, Plenum Press, New York.Google Scholar
Goldstein, R & Penner, S.S. (1964) J. Quant. Spectrosc. Rad. Transfer. 4, 441.Google Scholar
Luck, W (1963) Physik. Chem. 67, 186.Google Scholar
Luck, W (1965) Physik. Chem. 69, 626.Google Scholar
Mccabe, W.C., Subramanian, S & Fisher, H.F. (1970) J. phys. Chem. 74, 4360.Google Scholar
Subramanian, S & Fisher, H.F. (1972) J. phys. Chem. 76, 84.Google Scholar
Thomas, M.R., Sheraga, H.A. & Schier, E.E. (1965) J. phys. Chem. 69, 3722.Google Scholar
Worley, J.D. & Klotz, I.M. (1966) J. chem. Phys. 45, 2868.Google Scholar
Yamatera, H, Fitzpatrick, B & Gordon, G (1964) J. molec. Spectrosc. 14, 268.CrossRefGoogle Scholar