Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T16:35:14.541Z Has data issue: false hasContentIssue false

Electrical conductivity of montmorillonite as a function of relative humidity: La-montmorillonite

Published online by Cambridge University Press:  09 July 2018

N. J. García*
Affiliation:
Fisicoquímica, Departamento de Química, Universidad Nacional del Sur, Av. Alem 1253, B8000CPB, Bahía Blanca, Argentina
J. C. Bazán
Affiliation:
Fisicoquímica, Departamento de Química, Universidad Nacional del Sur, Av. Alem 1253, B8000CPB, Bahía Blanca, Argentina
*

Abstract

The conductivity of La-montmorillonite was measured in the domain of water relative pressures (p/p0) of <1, and compared with the conductivites of Li- and Na-montmorillonite. La-montmorillonite shows smaller conductivity over the whole range of p/p0 studied. To explain this, theoretical considerations of the polarizing power and of the local stacking order induced by the exchangeable cation were addressed.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alba, M.D., Alvero, R., Becerro, A.I., Castro, M.A., Munoz-Paez, A. & Trillo, J.M. (1997) Study of the reversibility on the local La3+ environment after thermal and drying treatments in lanthanum-exchanged smectites. Nuclear Instruments and Methods in Physics Research B, 133, 3438.CrossRefGoogle Scholar
Barrow, G.M. (1966) Physical Chemistry, p. 677, McGraw-Hill Book Company Inc., New York, Koga Kusha Company Ltd., Tokyo.Google Scholar
Berend, I., Cases, J.M., Francois, M., Uriot, I.P., Michot, L., Maison, A. & Thomas, F. (1995) Mechanism of adsorption and desorption of water vapor by homoionic montmorillonites: 2. The Li+, Na+, K+, Rb+, and Cs+-exchanged forms. Clays and Clay Minerals, 43, 324336.CrossRefGoogle Scholar
Bernal, J.D. & Fowler, R.H. (1933) A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions. Journal of Chemical Physics, 1, 515548.CrossRefGoogle Scholar
Boutehala, M. & Tedjar, F. (1993) Applications of exchanged montmorillonite as solid electrolyte. Solid State Ionics, 61, 257263.CrossRefGoogle Scholar
Calvet, R. (1975) Dielectric properties of montmorillonites saturated by bivalent cations. Clay and Clay Minerals, 23, 257265.CrossRefGoogle Scholar
Calvet, R. & Mamy, I. (1971) Sur la nature des charges responsables de la conductivié électrique des argiles. Comptes Rendus Academie des Sciences Paris, Série D, 273, 12511253.Google Scholar
Cases, I.M., Berend, I., Francois, M., Uriot, I.P., Michot, L. & Thomas, F. (1997) Mechanism of adsorption and desorption of water vapor by homoionic montmorillonite: 3. The Mg2+, Ca2+, Sr2+ and Ba2+ exchanged forms. Clays and Clay Minerals, 45, 822.CrossRefGoogle Scholar
Fripiat, J.J., Jelli, A., Poncelet, G. Andre, I. (1965) Thermodynamic properties of adsorbed water molecules and electrical conduction in montmorillonites and silicas. Journal of Physical Chemistry, 69, 21852197.CrossRefGoogle Scholar
Garcia, N.I. & Bazán, J.C. (1996) Conductivity in Na+- and Li+ -montmorillonite as a function of equilibration humidity. Solid State Ionics, 92, 139143.CrossRefGoogle Scholar
Grim, R.E. & Giiven, N. (1978) Bentonites: Geology, Mineralogy, Properties and Uses. Developments in Sedimentology, 24, p. 43. Elsevier Scientific Publishing Company. Amsterdam.Google Scholar
Helmy, A.K. (1974) Surface conductance in plugs. Electroanalytical Chemistry and Interfacial Electrochemistry, 52, 287290.CrossRefGoogle Scholar
Helmy, A.K. (1998) The limited swelling of montmorillonite. Journal of Colloid and Interface Science, 207, 128129.CrossRefGoogle ScholarPubMed
Johnston, C.T., Sposito, G. & Erickson, C. (1992) Vibrational probe studies of water interactions with montmorillonite. Clays Clay Minerals, 40, 722730.CrossRefGoogle Scholar
Maza-Rodríguez, J., Olivera-Pastor, P., Bruque, S. & Jiménez-Lopez, A. (1992) Exchange selectivity of lanthanide ions in montmorillonite. Clay Minerals, 27, 8189.CrossRefGoogle Scholar
Mozas, T., Bruque, S. & Rodriguez, A. (1980) Effect of thermal treatment on lanthanide montmorillonites: dehydration. Clay Minerals, 15, 421428.CrossRefGoogle Scholar
Nye, P.H. (1979) Diffusion of ions and uncharged solutes in soils and soil clays. Advances in Agronomy, 31, 225272.CrossRefGoogle Scholar
Poinsignon, C. (1997) Protonic conductivity and water dynamics in swelling clays. Solid State Ionics, 97, 399407.CrossRefGoogle Scholar
Poinsignon, C., Cases, J.M. & Fripiat, J.J. (1978) Electrical polarization of water molecules adsorbed by smectites. An infrared study. Journal of Physical Chemistry, 82, 18551860.CrossRefGoogle Scholar
Roy, G., Pelletier, M., Thomas, F., Despas, C. & Bessiere, J. (2000) Aggregation in Na-, K-, Ca-montmorillonite dispersions, characterized by impedance spectroscopy. Clay Minerals, 35, 335343.CrossRefGoogle Scholar
Slade, P.G. & Quirk, J.P. (1991) The limited crystalline swelling of smectites in CaCl2, MgCl2 and LaCl3 solutions. Journal of Colloid and Interface Science, 144, 1826.CrossRefGoogle Scholar
Slade, R.T., Barker, J., Hirst, R., Halsteadt, T.K. & Reid, P.I. (1987) Conduction and diffusion in exchanged montmorillonite clays. Solid State Ionics, 24, 289295.CrossRefGoogle Scholar
Sposito, G. (1984) The Surface Chemistry of Soils, pp. 198205, Oxford University Press, New York.Google Scholar
Tegenfeldt, J., Sjöblom, R. & Arevius, A. (2003) Electrokinetic monitoring of synthetic geoclay liners. Applied Clay Science, 23, 211218.CrossRefGoogle Scholar
Trillo, J.M., Poyato, J., Tobias, M.M. & Castro, M.A. (1990) Sorption of water vapour by M-montmorillonite (M= Na, Li, La). Clay Minerals, 25, 485498.CrossRefGoogle Scholar
Trillo, J.M., Alba, M.D., Castro, M.A., Muñoz, A., Poyato, J. & Tobias, M.M. (1992) Local environment of lanthanum ions in montmorillonite upon heating. Clay Minerals, 27, 423434.CrossRefGoogle Scholar
Winston, P.W. & Bates, D.H. (1960) Saturated solutions for the control of humidity in biological research. Ecology, 41, 232237.CrossRefGoogle Scholar
Zabat, M. & Van Damme, H. (2000) Evaluation of the energy barrier for dehydration of homoionic (Li, Na, Cs, Mg, Ca, Ba, A1x(OH)y z+ and La)-montmorillonite by a differentiation method. Clay Minerals, 35, 357363.CrossRefGoogle Scholar
Zabat, M., Vayer-Besancon, M., Harba, R., Bonnamy, S. & Van Damme, H. (1997) Surface topography and mechanical properties of smectite films. Progress in Colloid Polymer Science, 105, 96102.CrossRefGoogle Scholar