Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T21:33:47.509Z Has data issue: false hasContentIssue false

Dickite genesis in the ‘varicoloured’ clay-shale formation of the Italian Apennines: an isotopic approach

Published online by Cambridge University Press:  09 July 2018

F. Veniale
Affiliation:
Dipartimentodi Scienze dellaTerra, Università di Pavia, Italy
A. Delgado
Affiliation:
Departamento de Cienciasde laTierra y Química Ambiental, Estación Experimental del Zaidín-CSIC, GranadaSpain
L. Marinoni
Affiliation:
Dipartimentodi Scienze dellaTerra, Università di Pavia, Italy
M. Setti*
Affiliation:
Dipartimentodi Scienze dellaTerra, Università di Pavia, Italy
*

Abstract

Dickite occurs over wide areas along the Italian Apennines strip throughout Italy, mainly in the allochtonous ‘varicoloured’ clay-shale formation. Morphological, fabric and crystallochemical features suggest an authigenic origin, from pore solutions. The nature of the solutions and the process of dickite formation, including hydrothermalism, diagenesis or supergene evolution have all been discussed. Stable isotope analysis (O, H) was performed to investigate these points. The δD values of dickite range between −63.7 and −79.1% (SMOW) and δ18O between +21% and +16.1‰ (SMOW), and are similar to those reported for kaolinites formed in equilibrium with meteoric waters. The data fall along the ‘Line of Meteoric Kaolinites’, supporting an origin involving meteoric waters and low temperatures. The isotopic compositions of the waters are within the range of Apennines meteoric water, and the temperatures derived are close to surface conditions. Contributions of diagenetic, hydrothermal or metamorphic waters must be discounted. The authigenic dickite from ‘varicoloured’ clays of the Italian Apennines formed by precipitation from flushing meteoric waters whose ingress was favoured by repeated surface erosion.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amicarelli, V., Balenzano, F., Dell’Anna, L., Guerricchio, A., Melidoro, G. & Petrella, M. (1977) Dickite nelle argille “varicolori” dell’Italia meridionale. Geologia Applicata e Idrogeologia, 12, 353368.Google Scholar
Angel, B.R., Jones, P. & Richards, R. (1974) Synthetic kaolinites general comments. Chemical Geology, 13, 97113.Google Scholar
Anovitz, L.M., Perkins, D. & Essene, E.J. (1991) Metastability in near-surface rocks in the system Al2O3 SiO2 H2O. Clays and Clay Minerals, 39, 225233.CrossRefGoogle Scholar
Beaufort, D., Cassagnabère, A., Petit, S., Lanson, B., Berger, G., Lacharpagne, J.C. & Johansen, H. (1998) Kaolinite to dickite reaction in sandstone reservoir. Clay Minerals, 33, 297316.CrossRefGoogle Scholar
Belviso, R., Cherubini, C., Cotecchia, V., Del Prete, M. & Federico, A. (1977) Dati di composizione mineralogica delle argille varicolori affioranti nell’Italia meridionale, tra i fiumi Sangro e Sinni. Geologia Applicata e Idrogeologia, 12, 123142.Google Scholar
Borthwick, J. & Harmon, R. (1982) A note regarding ClF3 as an alternative to BrF5 for oxygen isotope analysis. Geochimica et Cosmochimica Acta, 46, 16651668.CrossRefGoogle Scholar
Buatier, M., Travé, A., Labaume, P. & Potdevin, J.L. (1997) Dickite related to fluid-sediment interaction and deformation in Pyrenean thrust-fault zones. European Journal of Mineralogy, 9, 875888.CrossRefGoogle Scholar
Buatier, M.D., Deneele, D., Dubois, M., Potdevin, J.L. & Lopez, M. (2000) Nacrite in the Lodève Permian basin: a TEM and fluid-inclusion study. European Journal of Mineralogy, 12, 329340.Google Scholar
Bühmann, D. (1988) An occurrence of authigenic nacrite. Clays and Clay Minerals, 36, 137140.CrossRefGoogle Scholar
Cellè, F., Granata, P., Setti, M. & Veniale, F. (1993) First occurrence of dickite in ‘varicoloured’ clays in the northern Apennines (Oltrepo Pavese), Italy. Pp. 221232 in: Kaolin Genesis and Utilization “The Keller's 90 Kaolin Symposium, 1990” (Murray, H.H., Bundy, W.M. & Harvey, C.C., editors). Special Publication 1, The Clay Minerals Society, Boulder, CO, USA.Google Scholar
Clayton, R.N. & Mayeda, T.K. (1963) The use of bromine pentafluoride in the extraction of oxygen from oxides and sili cate s for isotopic anal ysi s. Geochimica et Cosmochimica Acta, 27, 4352.CrossRefGoogle Scholar
Craig, H. (1961) Isotopic variations in meteoric waters. Science, 133, 17021703.Google Scholar
D’Argenio, B., Pescatore, T. & Scandone, P. (1975) Structur al patterns of the Campania-Lucania Apennines. Pp 313327 in. Structural Model of Italy (Ogniben, L., Parotto, M. & Praturlon, A., editors). Quaderno 90, La Ricerca Scientifica, Rome.Google Scholar
Delgado, A. & Reyes, E. (1996) Oxygen and hydrogen isotope composition in clay minerals: a potential single-mineral geothermometer. Geochimica et Cosmochimica Acta, 60, 42854294.CrossRefGoogle Scholar
De Ligny, D. & Navrotsky, A. (1999) Energetics of kaolin polymorphs. American Mineralogist, 84, 506516.CrossRefGoogle Scholar
Dell’Anna, L., Ferla, P. & Veniale, F. (1990) Genesis of dickite in “var icoloured” shales ( Italy). Mineralogica Petrographica Acta, 33,137.Google Scholar
Del Prete, M., Belviso, R., Cherubini, C., Federico, A., Soggetti, F. & Veniale, F. (1979) La dickite nelle argille “varicolori” dell’Appennino sannitico-irpino e lucano (Italia Meridionale). Atti della Società Italiana di Scienze Naturali, 120, 111125.Google Scholar
Dunoyer de Segonzac, G. (1970) The transformation of clay minerals during diagenesis and low-grade metamorphism: a review. Sedimentology, 15, 281326.CrossRefGoogle Scholar
Eberl, D. & Hower, J. (1975) Kaolinite synthesis: the role of the Si/Al and (alkali) (H+) ratio in hydrothermal systems. Clays and Clay Minerals, 23, 301309.CrossRefGoogle Scholar
Ehrenberg, S.N., Aagaard, P., Wilson, M.J., Fraser, A.R. & Duthie, D.M.L. (1993) Depth-dependent transformation of kaolinite to dickite in sandstones of the Norwegian continental shelf. Clay Minerals, 28, 325352.CrossRefGoogle Scholar
Ferla, P. (1982) Significato genetico della dickite presente in diverse formazioni argillose della Siciliae dell’Appennino meridional e (Italia). Bollettino della Società Geologica Italiana, 101, 233246.Google Scholar
Ferla, P. & Alaimo, R. (1975a) Dickite nelle argille variegate di Caltavuturo-Scillato (Madonie-Sicilia). Mineralogica et Petrographica Acta, 20, 117127.Google Scholar
Ferla, P. & Alaimo, R. (1975b) Minerali argillosi a strati misti nelle argille variegate a dickite di Scillato- Caltavuro (Sicilia). Problemi legati al loro riconoscimento e alla loro genesi. Mineralogi ca et Petrographica Acta, 20, 129149.Google Scholar
Ferrero, J. & Kübler, B. (1964) Présence de dickite et de kaolinite dans les grès Cambriens d’Hassi Messaoud. Bulletin du Service de la Carte Géologique d’Alsace et de Lorraine, 17, 247261.Google Scholar
Fialips, C.I., Navrotsky, A. & Petit, S. (2001) Crystal properties and energetics of synthetic kaolinite. American Mineralogist, 86, 304311.CrossRefGoogle Scholar
Frey, M. (editor ) (1987) Low-Temp er a ture Metamorphism. Blackie, Glasgow, UK.Google Scholar
Godfrey, J.D. (1962) The deuterium content of hydrous minerals from the East-Central Sierra Nevada and Yos emi te Nat iona l Park. Ge oc himica et Cosmochimica Acta, 26, 12151245.Google Scholar
Goemaere, E. (1991) Etude des matériaux du houiller belge. Le polytypisme de la kaolinite: occurrence de dickite et nacrite. PhD thesis, Univ. Liège, Belgium.Google Scholar
Granata, P. (1991) Processi diagenetici e di neoformazione in argille ‘ varicolori’ dell’Appennino italiano. PhD thesis, Univ. Pavia, Italy.Google Scholar
Hanson, R.F., Zamora, R. & Keller, W.D. (1981) Nacrite, dickite and kaolinite in one deposit in Nayarit, Mexico. Clays and Clay Minerals, 29, 451453.CrossRefGoogle Scholar
Hassanipak, A.A. & Eslinger, E.V. (1985) Mineralogy, crystallinity, 18O/16O and D/H of Georgia kaolins. Clays and Clay Minerals, 33, 99106.Google Scholar
Hauser, S., Dongarrá, G., Favara, R. & Longinelli, A. (1980) Composizione isotopica delle piogge in Sicilia. Riferimenti di base per studi idrogeologici e relazioni con altre aree mediterranee. Rendiconti della Società Italiana di Mineralogia e Petrografia, 36, 650671.Google Scholar
Keller, W.D. (1976) Scan electron micrographs of kaolins collected in diverse environments of origins 1. Clays and Clay Minerals, 24, 107113.Google Scholar
Keller, W.D. (1988) Authigenic kaolinite and dickite associated with metal sulphides, probable indicators of a regional thermal event. Clays and Clay Minerals, 36, 152158.CrossRefGoogle Scholar
Lanson, B., Beaufort, D., Berger, G., Bauer, A., Cassagnabère, A. & Meunier, A. (2002) Authigenic kaolin and illitic minerals during burial diagenesis of sandstones: a review. Clay Minerals, 37, 122.CrossRefGoogle Scholar
Lawrence, J.R. & Jr.Taylor, H.P. (1971) Deuterium and oxygen-18 correlation: clay minerals and hydroxides in quaternary soils compared to meteoric waters. Geochimica et Cosmochimica Acta, 35, 9931003.Google Scholar
Lawrence, J.R. & Jr.Taylor, H.P. (1972) Hydrogen and oxygen isotope systematics in weathering profiles. Geochimica et Cosmochimica Acta, 36, 13771393.CrossRefGoogle Scholar
Lippmann, F. (1982) The thermodynamic status of clay minerals. Pp. 475485 in. Proceed ings 7th International Clay Conference (Van Olphen, H. & Veniale, F., editors). Developments in Sedimentology 35, Elsevier, Amsterdam.Google Scholar
Longinelli, A. (1988) Stable isotope hydrology of the classical Karst area, Trieste, Italy. Rendiconti della Società Italiana di Mineralogia e Petrografia, 43, 11751183.Google Scholar
Loughnan, F.C. (1982) Genesis and synthesis: kaolins in sediments. Pp. 487494 in. Proceedings 7th International Clay Conference (Van Olphen, H. & Veniale, F., editors). Developments in Sedimentology, 35, Elsevier, Amsterdam.Google Scholar
Murray, H.H., Bundy, W. & Harvey, C. (1993) Kaolin Genesis and Utilization “The Keller's 90 Kaolin Symposium, 1990”. Special Publication, 1, The Clay Minerals Society, Boulder, CO.Google Scholar
Osborne, M., Haszeldine, R.S. & Fallick, A.E. (1994) Variation in kaolinite morphology with growth temperature in isotopically mixed pore-fluids, Brent Group, UK North Sea. Clay Minerals, 29, 591608.Google Scholar
Rozanski, K., Araguás, L. & Gonfiantini, R. (1993) Isotopic patterns in modern global precipitation. Pp. 136 in. Climatic Change in Continental Isotopic Records.Geophysical Monograph, 78, American Geophysical Union, Washington, D.C.Google Scholar
Ruiz-Cruz, M.D. (1996) Dickite, nacrite and possible dickit e-nacri te mixed-la yers from the Betic Cordilleras (Spain). Clays and Clay Minerals, 44, 357369.CrossRefGoogle Scholar
Ruiz-Cruz, M.D. & Andreo, B. (1996) Genesis and transformation of dickite in Permo-Triassic sediments (Betic Cordilleras, Spain). Clay Minerals, 31, 133152.CrossRefGoogle Scholar
Ruiz-Cruz, M.D. & Moreno-Real, L. (1993) Diagenetic kaolinite/dickite (Betic Cordilleras, Spain). Clays and Clay Minerals, 41, 570579.CrossRefGoogle Scholar
Ruiz-Cruz, M.D. & Reyes, E. (1998) Kaolinite and dickite formation during shale diagenesis: isotopic data. Applied Geochemistry, 13, 95104.CrossRefGoogle Scholar
Ruiz-Cruz, M.D., Moreno-Real, L. & Galán-Huertos, E. (1995) Kaolinite-dickite transformation by tectonic deformation in the campo de Gibraltar area (South Spain). Abstract, Euroclay 1995, Leuven, Belgium, pp. 336337.Google Scholar
Savin, S.M. & Epstein, S. (1970a) The oxygen and hydrogen isotope geochemistry of clay minerals. Geochimica et Cosmochimica Acta, 34, 2542.CrossRefGoogle Scholar
Savin, S.M. & Epstein, S. (1970b) The oxygen and hydrogen isotope geochemistry of ocean sediments and shales. Geochimica et Cosmochimica Acta, 34, 4363.CrossRefGoogle Scholar
Savin, S.M. & Lee, M. (1988) Isotopic studies of phyl losilicates. Pp. 189223 in. Hydrous Phyllosilicates (Exclusive of Micas) (Bailey, S.W., editor). Reviews in Mineralogy, 19. Mineralogical Society of America, Washington, D.C.CrossRefGoogle Scholar
Sheppard, S.M.F. (1986) Characterization and isotopic variations in natural waters. Pp. 165184 in: Stable Isotopes in High-temperature Geological Processes (Valley, J.W., Jr.Taylor, H.P. & O’Neil, J., editors). Reviews in Mineralogy, 16. Mineralogical Society of America, Washington, D.C.CrossRefGoogle Scholar
Sheppard, S.M.F. & Gilg, H.A. (1996) Stable isotope geochemistry of clay minerals. Clay Minerals, 31, 124.CrossRefGoogle Scholar
Sheppard, S.M.F., Nielsen, R.L. & Jr.Taylor, H.P. (1969) Hydrogen and oxygen isotope ratios of clay minerals from porphyry copper deposits. Economic Geology, 66, 515542.CrossRefGoogle Scholar
Shutov, V.D., Alexandrova, A.V. & Losievkaya, S.A. (1970) Genetic interpretation of the polytypism of the kaoli nit e group in sedimentar y rocks. Sedimentology, 15, 6982.CrossRefGoogle Scholar
Vennemann, T. & Smith, H. (1990) The rate and temperature of reaction of ClF3 with silicate minerals, and their relevance to oxygen isotope analysis. Chemical Geology, 86, 8388.Google Scholar
Zimmerle, W. & Rösch, H. (1990) Petrogenetic significance of dickite in European sedimentary rocks. Zentralblatt für Geologie und Palaeontologie, Teil I, 11751196.Google Scholar
Zotov, A., Mukhamed-Galeev, A. & Scott, J. (1998) An experimental study of kaolinite and dickite and relative stability at 150–300°C and the thermodynamic properties of dickite. American Mineralogist, 83, 516524.Google Scholar