Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T11:33:23.590Z Has data issue: false hasContentIssue false

Determination of diffusive transport in HDPy-montmorillonite by H2O-D2O exchange using in situ ATR-FTIR spectroscopy

Published online by Cambridge University Press:  09 July 2018

B. Schampera*
Affiliation:
Institute of Soil Science, Leibniz University Hannover, Herrenhäuser Str. 2, D-30419 Hannover, Germany
S. Dultz
Affiliation:
Institute of Soil Science, Leibniz University Hannover, Herrenhäuser Str. 2, D-30419 Hannover, Germany
*

Abstract

The anion adsorption capability of clays can be improved significantly by modification with certain organic cations. However, surface properties and the microstructure of the clay might change and limit the use of organo-clays in barrier systems. In this study an experimental setup is introduced which allows the rapid determination of effective diffusion coefficients (Deff) for H2O in clay samples. H2O→D2O exchange experiments on hexadecyl-pyridinium (HDPy)-montmorillonite samples were performed in a diffusion cell attached to the ATR unit of a Fourier-transform infrared spectrometer. The mean Deff for H2O in a D2O-saturated original montmorillonite is 2.44 × 10–11 m2/s in the bulk density range of 1.1–1.8 g/cm3. Hydrophobic surfaces increase the diffusivity only at high bulk densities in the saturated state. The mean Deff is lower when HDPy is applied in amounts ⩾80% of the cation exchange capacity in comparison with the original sample. At a saturation degree of the pores of 40%, Deff for all samples is one order of magnitude less than in the saturated state. Results on Deff obtained by ATR-FTIR spectroscopy are in good agreement with through-diffusion studies.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

An, J.-H. & Dultz, S. (2008) Adsorption of inorganic anions on chitosan-montmorillonite: selectivity determinations and effects of the pH-value. Clays and Clay Minerals, 56, 549557.Google Scholar
Andrades, M.S., Rodriguez-Cruz, M.S., Sanchez-Martin, M.J. & Sanchez-Camazano, M. (2004) Effect of the modification of natural clay minerals with hexadecylpyridinium cation on the adsorption-desorption of fungicides. International Journal of Environmental Analytical Chemistry, 84, 133141.Google Scholar
Bachmann, J., Woche, S.K., Goebel, M.-O., Kirkham, M.B. & Horton, R. (2003) Extended methodology for determining wetting properties of porous media. Water Resources Research, 39, 1353.Google Scholar
Bartelt-Hunt, S.L., Smith, J.A., Burns, S.E. & Rabideau, A.J. (2005) Evaluation of granular activated carbon, shale, and two organoclays for use as sorptive amendments in clay landfill liners. Journal of Geotechnical and Geoenvironmental Engineering, 131, 848856.Google Scholar
Becker, M.W. & Coplen, T.B. (2001) Use of deuterated water as a conservative artificial groundwater tracer. Hydrogeology Journal, 9, 512516.Google Scholar
Böckenhoff, K. & Fischer, W.R. (2001) Determination of electrokinetic charge with a particle-charge detector, and its relationship to the total charge. Fresenius Journal of Analytical Chemistry, 371, 670674.Google Scholar
Bors, J., Dultz, S. & Riebe, B (2000) Organophilic bentonites as adsorbents for radionuclides I. Adsorption ionic fission products. Applied Clay Science, 16, 113.Google Scholar
Bourg, I.C., Sposito, G. & Bourg, A.C.M. (2006) Tracer diffusion in compacted, water-saturated bentonite. Clays and Clay Minerals, 54, 363374.Google Scholar
Cormenzana, J.L., Garcia-Gutierrez, M., Missana, T. & Junghanns, A. (2003) Simultaneous estimation of effective and apparent diffusion coefficient in compacted bentonite. Journal of Contaminant Hydrology, 61, 6372.Google Scholar
Elabd, Y.A., Baschetti, M.G. & Barbari, T.A. (2003) Time-resolved Fourier Transform Infrared/Attenuated Total Reflection Spectroscopy for measurement of molecular diffusion in polymers. Journal of Polymer Science; Part B: Polymer Physics, 41, 27942807.Google Scholar
Fielderson, G.T. & Barbari, T.A. (1993) The use of FTi.r.-a.t.r. spectroscopy to characterize penetrant diffusion in polymers. Polymer, 34, 11461153.Google Scholar
Förstern, W., Wienberg, R. & Gerth, J. (1995) Biochemical resistance and contaminant attenuation of innovative construction materials for waste containment barriers. 231 pp. BMBF-report, Technical University Hamburg-Harburg.Google Scholar
Garcia-Gutierrez, M., Guimera, J., Yllera de Llano, A. Hernandez Bentitez, A., Humm, J. & Saltink, M. (1997) Tracer test at El Berrocal site. Journal of Contaminant Hydrology, 26, 179188.Google Scholar
Garcia-Gutierrez, M., Cormenzana, J.L., Missana, T., Mingarro, M. & Molinero, J. (2006) Overview of laboratory methods employed for obtaining diffusion coefficient in FEBEX compacted bentonite. Journal of Iberian Geology, 32, 3753.Google Scholar
Gecol, H., Ergican, E. & Miakatsindila, P. (2005) Biosorbent for tungsten species removal from water: effect of co-occurring inorganic species. Journal of Colloid and Interface Science, 292, 344353.CrossRefGoogle ScholarPubMed
Grathwohl, P. (1998) Diffusion in Natural Porous Media: Contaminant Transport, Sorption/Desorption and Dissolution Kinetics. 224 pp. Kluwer Academic Publishers, Boston.Google Scholar
He, H., Zhou, Q., Martens, W.N., Kloprogge, T.J., Yuan, P., Xi, Y., Zhu, J. & Frost, R.L. (2006) Micro structure of HDTMA+-modified montmorillonite and its influence on sorption characteristics. Clay and Clay Minerals, 54, 689696.Google Scholar
Himmelsbach, T., Hoetzl, H. & Maloszewski, P. (1998) Solute transport processes in a highly permeable fault zone of Lindau fractured rock test site (Germany). Groundwater, 36, 792800.Google Scholar
Koh, S.M., Song, M.S. & Takagi, T. (2005) Mineralogy, chemical characteristics and stabilities of cetylpyridinium-exchange smectite. Clay Minerals, 40, 213222.Google Scholar
Krishna, B.S., Murty, D.S.R. & Jai Prakash, B.S. (2001) Surfactant-modified clay as adsorbent for chromate. Applied Clay Science, 20, 6571.Google Scholar
Kuwaharada, S., Tateyama, H., Nishimura, S. & Hirosue, H. (2002) Smectite quasicrystals in aqueous solutions as a function of cationic surfactant concentration. Clays and Clay Minerals, 50, 1824.Google Scholar
Lagaly, G., Schulz, O. & Ziemehl, R. (1997) Dispersionen und Emulsionen: Eine Einfiihrung in die Kolloidik feinverteilter Stoffe einschliefilich der Tonminerale. 560 pp. Steinkopff Verlag, Darmstadt.Google Scholar
Li, Y.-H. & Gregory, S. (1974) Diffusion of ions in sea water and in deep-sea sediments. Geochimica et Cosmochimica Ada, 38, 703714.Google Scholar
Li, Z.H., Willms, C.A. & Kniola, K. (2003) Removal of anionic contaminants using surfactant-modified palygorskite and sepiolite. Clays and Clay Minerals, 51, 441451.Google Scholar
Lo, I.M.C., Mak, R.K.M. & Lee, S.C.H. (1997) Modified clays for waste containment and pollutant attenuation. Journal of Environmental Engineering, 123, 2532.Google Scholar
Lorenzetti, R.L., Shannon, L., Bartelt-Hunt, S.L., Burns, S.E. & Smith, J.A. (2005) Hydraulic conductivities and effective diffusion coefficients of geosynthetic clay liners with organobentonite amendments. Geotextiles and Geomembranes, 23, 385400.Google Scholar
Martys, N.S. (1999) Diffusion in partially-saturated porous materials. Materials and Structures, 32, 555562.Google Scholar
Meleshyn, A. & Bunnenberg, C. (2006) Interlayer expansion and mechanisms of anion sorption of Na-montmorillonite modified by cetylpyridinium chloride: A Monte Carlo study. Journal of Physical Chemistry B, 110, 22712277.CrossRefGoogle ScholarPubMed
Michot, L.J., Deville, A., Humbert, B., Plazanet, M. & Levitz, P. (2007) Diffusion of water in a synthetic clay with tetrahedral charges by combined diffusion in natural porous media: contaminant transport neutron time-of-flight measurements and molecular dynamics simulations. Journal of Physical Chemistry C, 111, 98189831.Google Scholar
Mills, R. (1973) Self-diffusion in normal and heavy water in the range 1-45°C. Journal of Physical Chemistry, 77, 685689.Google Scholar
Mordis, G.J. (1999) Semianalytical solution of parameter estimation in diffusion cell experiments. Water Resources Research, 35, 17291740.Google Scholar
Nakashima, Y. (2002) Diffusion of H2O and I in expandable mica and montmorillonite gels: contribution of bound H2O. Clays and Clay Minerals, 50, 110.Google Scholar
Patzko, A. & Dekany, I. (1993) Ion exchange and molecular adsorption of a cationic surfactant on clay minerals. Colloids and Surfaces A: Physiocochemical and Engineering Aspects, 71, 299307.Google Scholar
Pineda-Piòón, J., Mendoza-López, M.L., Manzano-Ramírez, A., Pérez-Robles, J.F. & Vega-Durán, J.T. (2007) Water diffusion in clays with added organic surfactants. Journal of Physics D: Applied Physics, 40,4991-4997.Google Scholar
Revil, A. & Jougnot, D. (2008) Diffusion of ions in unsaturated porous material. Journal of Colloid and Interface Science, 319, 226235.Google Scholar
Riebe, B., Dultz, S. & Bunnenberg, C. (2005) Temperature effects on iodine adsorption on orga-no-clay minerals I. Influence of pre-treatment and adsorption temperature. Applied Clay Science, 28, 916.Google Scholar
Rytwo, G., Kohavi, Y., Botnick, I. & Gonen, Y. (2007) Use of CV- and TPP-montmorillonite for the removal of priority pollutants from water. Applied Clay Science, 36, 182190.Google Scholar
Sato, H. & Suzuki, S. (2003) Fundamental study on the effect of an orientation of clay particles on diffusion pathway in compacted bentonit. Applied Clay Science, 23, 5160.Google Scholar
Shackelford, Ch.D. (1991) Laboratory diffusion testing for waste disposal: a review. Journal of Contaminant Hydrology, 7, 177217.Google Scholar
Suzuki, S., Sato, H., Ishidera, T. & Fujii, N. (2004) Study on anisotropy of effective diffusion coefficient and activation energy for deuterated water in compacted sodium bentonite. Journal of Contaminant Hydrology, 68, 2337.Google Scholar
Van Loon, L.R., Soler, J.M., Müller, W. & Bradbury, M.H. (2004) Anisotropic diffusion in layered argillaceous rocks: a case study with opalinus clay. Environmental Science & Technology, 38, 57215728.Google Scholar
Van Loon, L.R., Glaus, M.A. & Müller, W. (2007) Anion exclusion effects in compacted bentonites: towards a better understanding of anion diffusion. Applied Geochemistry, 22, 25362552.Google Scholar
Van Reeuwijk, L. P. (1993) Procedures for soil analysis (4th edition), ISRIC Technical paper 9. Wageningen, The Netherlands. 95 pp.Google Scholar
Warren, D.S., Clark, A.I. & Perry, R. (1986) A review of clay-aromatic intercalation with a view to their use in hazardous waste disposal. Science of the Total Environment, 54 157172.Google Scholar
Woche, S. K., Goebel, M.-O., Kirkham, M.B., Horton, R., van der Ploeg, R.R. & Bachmann, J. (2005) Contact angle of soils as affected by depth, texture, and land management. European Journal of Soil Science, 56, 239251.Google Scholar
Yllera, A., Hernandez, M., Mingarro, A., Quejido, L.A., Sedano, J.M., Soler, J., Samper, J., Molinero, J.M., Barcala, P.L., Martin, M., Fernandez, P., Wersin, P., Rivas, P. & Hernan, P. (2004) DI-B experiment: planning, design and performance of an in situ diffusion experiment in the Opalinus Clay formation. Applied Clay Science, 26, 181196.Google Scholar