Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-26T14:16:57.963Z Has data issue: false hasContentIssue false

Density and structure of allophane

Published online by Cambridge University Press:  09 July 2018

Shin-Ichiro Wada
Affiliation:
Faculty of Agriculture, Kyushu University, Fukuoka 812, Japan
Koji Wada
Affiliation:
Faculty of Agriculture, Kyushu University, Fukuoka 812, Japan

Abstract

The densities of two allophane samples measured by displacement with water were 2·72–2·78 g/cm3, while those measured by a float-sink test in CH3OH-, CH3 COCH3-, C6H6- and CCl4-C2H2Br4 mixtures were 1·84, 1·94–1·98, 2·35 and 2·35–2·39 g/cm3, respectively. The results of the density determinations for montmorillonite, kaolinite, halloysite, imogolite and volcanic glass are also reported. The data were interpreted in terms of the accessibility of the displacement liquids to void spaces within and between the layers or ‘structure units’ of the minerals and a model of the ‘structure units’ of allophane is proposed.

Résumé

Résumé

Les densités de deux échantillons d'allophane mesurés par déplacement avec l'eau étaient de 2·72–2·78 g/cm3, tandis que celles mesurées au moyen d'une épreuve de flottaison-affaissement dans des mélanges de CH3OH-, CH3COCH3-, C6H6- et CCl4- C2H2Br4 étaient respectivement de 1·84, 1·94–1·98, 2·35 et 2·35–2·39 g/cm3. Il est également rendu compte des résultats des déterminations de densité pour la montmorillonite, la kaolinite, l'halloysite, l'imogolite et le verre volcanique. Les données ont été inter-prétées en fonction de l'accessibilité des liquides de déplacement aux espaces vides au sein et entre les ‘unités de structure’ des deux minéraux, et un modèle ‘d'unités de structure’ d'allophane est proposé.

Kurzreferat

Kurzreferat

Die Dichten von zwei durch Verdrängung mit Wasser gemessenen Allophanproben betrugen 2·72–2·78 g/cm3, während bei Messung nach Schwimm- und Sinkversuchen in Gemischen von CH3OH, CH3COCH3, C6H6 und CCl4-C2H2Br4 Dichten von 1·84, 1·94–1·98, 2·25 bzw. 2·35–2·39 g/cm3 erzielt wurden. Die Ergebnisse der Dichtebestimmungen bei Montmorillonit, Kaolinit, Halloysit, Imogolit und vulkanischem Glas werden ebenfalls berichtet. Die Daten wurden vom Standpunkt der Zugänglichkeit der Verdrängungsflüssigkeiten leeren Räumen innerhalb und zwischen den ‘Struktureinheiten’ der beiden Mineralien gegenüber ausgewertet, undes wird ein Modell der ‘Struktur-einheiten’ von Allophan empfohlen.

Resumen

Resumen

Las densidades de dos muestras de alófana medidas por desplazamiento con agua han sido 2·72–2·78 g/cm3, mientras que midiéndolas por el procedimiento de flotación-hundimiento en mezclas de CH3OH-, CH3COCH3-, C6H6- y CCl4-C2H2Br4 han sido 1.84, 1·94–1·98, 2·35 y 2·35–2·39 g/cm3 respectivamente. También se comunican los resultados de las determinaciones de la densidad referentes a montmorillonita, caolinita, haloisita, imogolita y vidrio volcánico. Se han interpretado los datos refiriéndolos a la accesibilidad de los liquidos de desplazamiento a los espacios huecos de dentro y de entre las ‘unidades de estructura’ de los dos minerales—y se propone un modelo de la ‘unidades de estructura’ de la alófana.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1977

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aomine, S. & Wada, K. (1962) Amer. Miner. Al, 1024.Google Scholar
Aomine, S. & Yoshinaga, N. (1953) Sci. Bull. Fac. Agr. Kyushu Univ. 14, 257.Google Scholar
Birrell, K.S. & Fieldes, M. (1952) J. Soil Sci. 3, 156.CrossRefGoogle Scholar
Cradwick, P.D.G., Farmer, V.C., Russell, J.D., Masson, C.R., Wada, K. & Yoshinaga, N. (1972) Nature: Phys. Sci. 240, 187.Google Scholar
Day, D.E. & Rindone, G.E. (1962) J. Amer. Chem. Soc. 45, 489.Google Scholar
Deeds, C.T. & Van Olphen, H. (1963) Clays Clay Miner. 10, 318.Google Scholar
Egawa, T. (1964) Clay Sci. 2, 1.Google Scholar
Grim, R.E. (1968) Clay Mineralogy. McGraw-Hill, New York.Google Scholar
Gruner, J.W. (1937) Amer. Miner. 22, 855.Google Scholar
Henmi, T. & WADA, K. (1976) Amer. Miner. 61, 379.Google Scholar
Iler, R.K. (1955) The Colloid Chemistry of Silica and Silicates. Cornell University Press.Google Scholar
Kanno, I. (1961) Bull. Kyushu Agric. Exp. Sta. 7, 1.Google Scholar
Kitagawa, Y. (1971) Amer. Miner. 56, 465.Google Scholar
Kitagawa, Y. (1976) Soil Sci. PL Nutr. Toky. 22, 199.CrossRefGoogle Scholar
Low, P.F. (1961) Advan. Agron. 13, 269.Google Scholar
Macewan, D.M.C. (1948) Trans. Faraday Soc. 44, 349.CrossRefGoogle Scholar
Martin, R.T. (1962) Clays Clay Miner. 9, 28.CrossRefGoogle Scholar
Miyauchi, N. & Aomine, S. (1966) Soil Sci. PL Nutr. Toky. 12, 187.Google Scholar
Okada, K., Morikawa, S., Iwai, S., Ohira, Y. & Ossaka, J. (1975) Clay Sci. A, 291.Google Scholar
Pauling, L. (1960) The Nature of the Chemical Bond. Cornell University Press.Google Scholar
Russell, J.D., Mchardy, W.J. & Fraser, A.R. (1969) Clay Miner. 8, 87.CrossRefGoogle Scholar
Takagi, S. & Aboshi, H. (1955) Rep. Inst. Sci. Tech. Univ. Toky. 5, 253.Google Scholar
Udagawa, S., Nakada, T. & Nakahira, M. (1969) Proc. Int. Clay Conf. Toky. 1, 151.Google Scholar
Wada, K. (1966) Soil Sci. PL Nutr. Toky. 12, 176.Google Scholar
Wada, K. & MATSUBARA, I. (1968) Trans. 9th Int. Congr. Soil Sci. 3, 123.Google Scholar
Wada, K. & Yoshinaga, N. (1969) Amer. Miner. 54, 50.Google Scholar
Wada, K., Yoshinaga, N., Yotsumoto, H., Ibe, K. & Aida, S. (1970) Clay Miner. 8, 487.Google Scholar
Wells, A.F. (1950) Structural Inorganic Chemistry. Clarendon Press, Oxford.Google Scholar
Winchell, A.N. & WINCHELL, H. (1959) Elements of Optical Mineralogy, Part II. John Wiley and Sons, New York.Google Scholar
Yoshinaga, N. (1966) Soil Sci. PI. Nutr. Toky. 12, 47.Google Scholar