Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-23T15:41:21.915Z Has data issue: false hasContentIssue false

Contribution of multivariate geochemical analysis and mineralogical study in the characterization of sediments: the Miocene-Pliocene boundary in the Sorbas Basin (SE Spain)

Published online by Cambridge University Press:  09 July 2018

A. Sanchez Bellon
Affiliation:
Dpto. de Cristalografía y Mineralogía de la Universidad de Cádiz, Aptdo N° 40, Facultad de Ciencias, 11510 Puerto Real, Spain
Ch. Mosser
Affiliation:
Centre de Géochimie de la Surface CNRS, 1 rue Blessig, F-67084 Strasbourg Cedex, France
J. P. Moral Cardona
Affiliation:
Dpto. de Cristalografía y Mineralogía de la Universidad de Cádiz, Aptdo N° 40, Facultad de Ciencias, 11510 Puerto Real, Spain
C. Roquin
Affiliation:
Centre de Géochimie de la Surface CNRS, 1 rue Blessig, F-67084 Strasbourg Cedex, France
E. Sebastian Pardo
Affiliation:
Dpto. de Mineralogía y Petrología de la Universidad de Granada, Avda. Fuentenueva s/n, Facultad de Ciencias, 18002 Granada, Spain

Abstract

A mineralogical study and multivariant geochemical analysis have been carried out to determine the sedimentation processes and the influence of surrounding rocks on sediments. Analyses were made on the clay fraction of sediments and on bulk samples of rocks from nearby reliefs in the Sorbas Basin (SE Spain). Source rocks were identified by statistical analysis of trace elements and by comparison of the crystallographic parameters of phyllosilicates in sediments and supposed sources. Palaeoenvironmental conditions are recorded by specific elements in the clay minerals. The study of the B and Mg content and of the different types of smectites and palygorskite found in distinct areas has permitted a description of these conditions for this Basin. In this way, different types of deposition environment, showing varying degrees of confinement and influence from marine or continental water, have been distinguished.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aldaya, F., Garcia Duenas, V. & Navarro Vila, F. (1979) Los mantos alpujárrides del tercio central de las Cordilleras Béticas. Ensayo de correlación tectónica de los Alpujárrides. Acta Geol. Hisp., 14, 154–166.Google Scholar
Benzecri, J.P. (1973) L‘analyse de DonnEes. Vol. 1. Dunot, Paris.Google Scholar
Benzecri, J.P. & Benzecri, F. (1984) Pratique de l'analyse des données. In: An Analyse de Correspondance et Classification. Vol. 1. Dunot, Paris.Google Scholar
Chamley, H. (1989) Clay Sedimentology. Springer-Verlag BerlinGoogle Scholar
Cook, P.J. (1972) Petrology and geochemistry of the phosphorite deposits of Northwest Queensland, Australia. Econ. Geol. 67, 11931213.Google Scholar
Degens, E.T., Williams, E.G. & Keith, M.L. (1958) Environmental studies of Carboniferous sediments, Part I: Geochemical criteria for differentiating marine and fresh water shales. Bull. Am. Assoc. Pet. Geol. 41, 24272455.Google Scholar
Diaz de Federico, A., Torres-Roldan, R. & Puga, E. (1990) The rock-series of the betic substratum. Doc. Trav. IGAL, 12-13, 1929.Google Scholar
Goldschmidt, V.M. & Peters, C. 1932. Zur geochimie des Bors, Teil I and II. Nachr. Akad. Wiss., Math. Phys. K1., pp. 402-407 and 528-545.Google Scholar
Harder, H. 1970. Boron content of sediment as a tool in facies analysis. Sed. Geol., 4, 153175.Google Scholar
Lebart, L., Morineau, A. & Fenelon, J.P. (1982) Traitements des Données Statistiques, Méthodes et Programmes. Dunod, edits., Paris.Google Scholar
Martin Ramos, D. (1976) Las Micas de las Cordilleras Béticas. Tesis Doctoral, Univ. Granada, Spain.Google Scholar
Millot, G. (1964) La Géologie des Argiles. Mason, Paris.Google Scholar
Montenat, Ch. & Ott d'Estevou Ph. (1990) Eastern Betic Neogene Basin – A review. Doc. trav. IGAL, 12-13, 915.Google Scholar
Mosser, Ch. (1980) Etude géochimique de quelques é1éments traces dans les argiles des altérations et des sédiments. ScL Géol., Mem., 63, Institut de Géologie, U.L.P., Strasbourg.Google Scholar
Mosser, Ch., Brillanceau, A. & Besnus, Y. (1991) Relationship between sediments and their igneous source rocks using clay minerals multi-element chemistry: the Cenozoic lacustrine Anloua Basin (adamaoua, Cameroon). Chem. Geol., 90, 319324.Google Scholar
Nieto, F. (1983) Las Cloritas de las Cordilleras B∼ticas. Tesis Doctoral de la Universidad de Granada, Spain.Google Scholar
Nieto Garcia, F., Ortega Huertas, M. & Velilla, N. (1989) Some crystallochemical and petrographic criteria for determining source rocks and sedimentary processes. Clay Miner. 24, 603619.CrossRefGoogle Scholar
Ott d'Estevou, P. (1980) Evolution dynamique de bassin néogène de Sorbas (Cordillère Béiques. Espagne. Thèses, Doc. trav. IGAL, 1, 264 pp.Google Scholar
Ott d'Estevou, P. & Montenat, C. (1990) Le bassin de Sorbas Tabernas. Doc. tray. IGAL, 12-13, 101128.Google Scholar
Samuel, J., Rouault, R. & Besnus, Y. (1985) Analyse multiélémentaire standarisée des matériaux géologiques en spectométrie d'émision par plasma a couplage inductif. Analusis, 13, 7, 312–317.Google Scholar
Sánchez Bellón, A. (1992) Caracterización mineralógica y geoquímica del trásito Mioceno-Plioceno en las cuencas de Vera y Sorbas (Almería). Tesis doc., Univ. de Granada, Spain.Google Scholar
Sánchez Bellén, A. (1995) Estudio compositional y genético de las esmectitas del tránsito Mioceno-Plioceno de las cuencas de Vera y Sorbas , Almería. Bol. Soc. Esp. Min. 18, 1726.Google Scholar
S.A.S. (1988) User's Guide Statistics. ACP. Ver. 603. S.A.S. Instit. Inc. Cary N.C. USA.Google Scholar
Tardy, Y. (1975) Elements partition ratios in some sedimentary environments. II Studies on North-American black shale. Sci. Geol. Bull. 28, 1, 7595.Google Scholar
Thiry, M. (1981) Sédimentation continentale et altérations associées: calcitisation, ferruginisations et silicification. Les argiles plastiques du Sparnacien du Bassin de Paris. Sci. Géol. Mem. 84, 173 pp.Google Scholar
Thiry, M. & Trauth, N. (1976) Les sédiments paléocènes et éocènes inféririeurs du Bassin de Paris. Role des argiles clans la rétention d'éléments traces. Sci. Géol. Bull. 29, 3343.Google Scholar
Trauth, N. (1977) Argiles évaporitiques clans la sédimentation carbonatée continentale et épicontinentale tertiaire. Bassin de Paris, de Moemoiron et de Salinelles (France), Ubel Ghassoul (Maroc). Sci. Géol. Mém., 49, 203 pp.Google Scholar
Volk, H.R. & Rondeel, H.E. (1964) Zur gliederung des jungtertiäs im Becken yon Vem, Südostspanien. Geol. Minjb. 43, 310315.Google Scholar
Weaver, C.E. & Beck, K. (1977) Miocene of the, S.E. USA: a model for chemical sedimentation in a perimarine environment. Develop. Sedim. 22, Elsevier Scientific Publishing Company.Google Scholar