Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-15T13:44:22.720Z Has data issue: false hasContentIssue false

Commercial bentonite from the Kopernica deposit (Tertiary, Slovakia): a petrographic and mineralogical approach

Published online by Cambridge University Press:  02 January 2018

K. Górniak*
Affiliation:
AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, al. Mickiewicza 30, 30-059 Kraków, Poland
T. Szydłak
Affiliation:
AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, al. Mickiewicza 30, 30-059 Kraków, Poland
A. Gaweł
Affiliation:
AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, al. Mickiewicza 30, 30-059 Kraków, Poland
A. Klimek
Affiliation:
AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, al. Mickiewicza 30, 30-059 Kraków, Poland
A. Tomczyk
Affiliation:
AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, al. Mickiewicza 30, 30-059 Kraków, Poland
B. Sulikowski
Affiliation:
Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30-239 Kraków, Poland
Z. Olejniczak
Affiliation:
Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, 31-342 Kraków, Poland
J. Motyka
Affiliation:
CERTECH, ul. Fabryczna 36, 33-132 Niedomice, Poland
E.M. Serwicka
Affiliation:
Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30-239 Kraków, Poland
K. Bahranowski
Affiliation:
AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, al. Mickiewicza 30, 30-059 Kraków, Poland
*

Abstract

Commercial bentonite from the Kopernica deposit, Slovakia, is currently mined by the CERTECH Company, Poland, to produce materials intended for animal-care applications and other industrial purposes. The present study aimed to assess the mineralogical, petrographic and physicochemical characteristics of three bentonite varieties from Kopernica used by the company. The X-ray diffraction, optical microscopy, field emission scanning electron microscopy (FESEM), nuclear magnetic resonance, thermal analysis, infrared spectroscopy and chemical analyses showed that the main component of the rocks is montmorillonite with the average structural formula Ca0.31K0.08Na0.04(Al3.23Mg0.54Fe0.23)[(Si7.80Al0.20)O20](OH)4. In addition, opal-C/CT, biotite, potassium feldspar and plagioclase, quartz, clinoptilolite and kaolinite are present. Key information about the textural relationships between the mineral components identified was obtained from detailed thin-section petrography and FESEM studies. The rocks studied have fragmented, eutaxitic texture. They are composed of pumice fragments collapsed into lenticular masses (fiamme) which were strongly deformed and altered, though the shard structures were retained. The compressed glass shards were moulded around pyroclastic grains such as crystal fragments of quartz, biotite and zoned plagioclases, and clasts of volcanic rocks. Observations by FESEM showed that the axes of shards and the walls of the flattened vacuoles are outlined by the inward-growing microlites of silica (axiolitic texture), whilst the interiors of shards are altered to clay. Grain-size distribution, textural properties and microscope observations of grain-size fractions reveal that the Kopernica bentonite contains montmorillonite-opal aggregates difficult to disperse in water.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamcová, R., Frankovská J. & Durmeková T (2009) Engineering geological clay research for a radioactive waste repository in Slovakia. Acta Geologica Slovaca, 1, 7182.Google Scholar
Adamcová, R., Suraba, V., Krajňák, A., Rosskopfová O. & Galamboš M. (2014) First shrinkage parameters of Slovak bentonites considered for engineered barriers in the deep geological repository of high-level radioactive waste and spent nuclear fuel. Journal of Radioanalytical and Nuclear Chemistry, 302, 737743.CrossRefGoogle Scholar
Adamcová, R., Otner, F., Wriessing, K. & Deliova, J. (2015) 10 years of exploitation: still the same Kopernica bentonite? EUROCLAY 2015, 5-10 July 2015, Edinburgh (UK). Programme & Abstracts, p. 390.Google Scholar
Adams, S.J., Hawkes, G.E. & Curzon, E.H. (1991) A solid state 29Si nuclear magnetic resonance study of opal and other hydrous silicas. American Mineralogist, 76, 18631871.Google Scholar
Bahranowski, K., Górniak, K., Szydłak, T., Gaweł, A., Klimek, A., Tomczyk, A. & Motyka, J. (2014) The commercial bentonite from Kopernica (Tertiary, Slovakia) — petrographical and mineralogical approach. MECC14, 7th Mid-European Clay Conference, 16-19 September 2014, Dresden, Germany. Abstract book, p. 275.Google Scholar
Barrett, E.P., Joyner, L.G. & Halenda, P.P. (1951) The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. Journal of the American Chemical Society, 73, 373380.Google Scholar
Bezák, V. & Lexa, J. (1983) Genetic types of rhyolite volcanoclastics from the Žiar nad Hronom region. Geologické Práce Správy, 79, 83112.Google Scholar
Breen, C., Madejová, J. & Komadel, P. (1995) Characterisation of moderately acid-treated, size-fractionated montmorillonites using IR and MAS NMR spectroscopy and thermal analysis. Journal of Materials Chemistry, 5, 46974.Google Scholar
Chipera, S.J. & Bish, D.L. (2001) Baseline studies of the Clay Minerals Society source clays: powder X-ray diffraction analysis. Clays and Clay Minerals, 49, 39509.Google Scholar
Christidis, G.E. (2001) Formation and growth of smectites in bentonites: a case study from Kimolos Island, Aegean, Greece. Clays and Clay Minerals, 49, 204215.CrossRefGoogle Scholar
Christidis, G.E. (2013) Assessment of industrial clays. pp. 425-44 in: Handbook of Clay Science. Part B: Techniques and Applications (F Bergaya & G. Lagaly, editors). Elsevier, Amsterdam.Google Scholar
Christidis, G. & Dunham, A.C. (1997) Compositional variations in smectites. Part II: Alteration of acidic precursors, case study from Milos Island, Greece. Clay Minerals, 32, 253270.Google Scholar
Christidis, G. & Huff, W.D. (2009) Geological aspects and genesis of bentonites. Elements, 5, 9398.Google Scholar
Christidis, G. & Scott, P.W. (1996) Physical and chemical properties of the bentonite deposits of Milos Island, Greece. Transactions of the Institution of Mining and Metallurgy: Section B — Applied Earth Science, 105, B165-B174.Google Scholar
Christidis, G., Scott, P.W. & Marcopoulos, T. (1995) Origin of the bentonite deposits of Eastern Milos, Aegean, Greece: Geological, mineralogical and geochemical evidence. Clays and Clay Minerals 43, 6377.CrossRefGoogle Scholar
de Jong, B.H.W.S., Veeman, W.S., Hoek, J. & Manson, D.V. (1987) X-ray diffraction and 29Si magic-angle-spinning NMR of opals: incoherent long-and short-range order in opal-CT. American Mineralogist, 72, 11951203.Google Scholar
Drits, V.A., Lindgreen, H., Sakharov, B.A., Jakobsen, H.J. & Zviagina, B.B. (2004) The detailed structure and origin of clay minerals at the Cretaceous/Tertiary boundary, Stevens Klint (Denmark). Clay Minerals, 39, 367390.Google Scholar
Dubinin, M.M., Astakhov, V.A. & Radushkevich, L.V. (1975) Physical adsorption of gas vapours in micro-pores, progress and membrane science. Pp. 1–70 in: Progress in Surface and Membrane Science (D.A Cadenhead, J.F. Danielli & M.D. Rosenberg, editors), 9, Academic Press, New York.Google Scholar
Farmer, V.C. (1974) Layer silicates. pp. 331-363 in: Infrared Spectra of Minerals (V.C. Farmer, editor). Mineralogical Society, London.Google Scholar
Fisher, R.V. & Schmincke, H.U. (1984) Pyroclastic Rocks. Springer Verlag, Berlin, 472 pp.Google Scholar
Galamboš, M., Rosskopfová, O., Kufčáková, J. & Rajec, P. (2011) Utilization of Slovak bentonites in deposition of high-level radioactive waste and spent nuclear fuel. Journal of Radioanalytical and Nuclear Chemistry, 288, 765777.Google Scholar
Graetsch, H., Gies, H. & Topalovic, I. (1994) NMR, XRD and IR study on microcrystalline opals. Physics and Chemistry of Minerals, 21, 166175.Google Scholar
Greene-Kelly, R. (1952) A test montmorillonite. Nature, 170, 11301131.Google Scholar
Greene-Kelly, R. (1953) The identification of montmor-illonites in clays. Journal of Soil Science, 4, 233237.Google Scholar
Greene-Kelly, R. (1955) Dehydration of the montmorillonite minerals. Mineralogical Magazine, 30, 604615.Google Scholar
Grim, R.E. & Güven, N. (1978) Bentonites. Geology, Mineralogy, Properties and Uses. Elsevier, Amsterdam, 256 pp.Google Scholar
Harvey, C.C. & Lagaly, G. (2013) Industrial applications. Pp. 451-486 in: Handbook of Clay Science. Part B: Techniques and Applications (F. Bergaya & G. Lagaly, editors). Elsevier, Amsterdam.Google Scholar
Henderson, J.H., Jackson, M.L., Syers, J.K., Clayton, R.N. & Rex, R.W. (1971) Cristobalite authigenic origin in relation to montmorillonite and quartz origin in bentonites. Clays and Clay Minerals, 19, 229238.Google Scholar
Hofmann, U. & Klemen, R. (1950) Verlust der Austauschfahigkeit yon Lithiumionen an Bentonit durch Erhitzung. Zeitschrift für anorganische und allgemeine Chemie, 262, 9599.Google Scholar
Khoury, H.N. & Eberl, D.D. (1979) Bubble-wall shards altered to montmorillonite. Clays and Clay Minerals, 27, 291292.Google Scholar
Kinsey, R.A., Kirkpatrick, R.J., Hower, J., Smith, K.A. & Oldfield, E. (1985) High resolution aluminium 27 and silicon 29 nuclear magnetic resonance spectroscopic study of layer silicates, including clay minerals. American Mineralogist, 70, 537548.Google Scholar
Kirkpatrick, R.J., Smith, K.A., Schramm, S., Turner, G. & Yang, W.-H. (1985) Solid state nuclear magnetic resonance spectroscopy of minerals. Annual Review of Earth and Planetary Sciences, 13, 2947.CrossRefGoogle Scholar
Kloprogge, J.T. (2006) Spectroscopic studies of synthetic and natural beidellites: a review. Applied Clay Science, 31, 165179.CrossRefGoogle Scholar
Klug, C., Cashman, K.V. & Bacon, C.R. (2002) Structure and physical characteristics of pumice from the climactic eruption of Mount Mazama (Crater Lake), Oregon. Bulletin of Volcanology, 64, 486501.Google Scholar
Komarneni, S. (1986) Characterization of synthetic and naturally occurring clays by 27Al and 29Si magic-angle spinning NMR spectroscopy. Journal of the American Ceramic Society, 69, C45-C47.Google Scholar
Konecny, Y. & Lexa, J. (2001) Evolution of the horst-graben structure in the Central Slovakia Volcanic Field. Geolines, 13, 7880.Google Scholar
Kraus, I. (2008) Nové trendy a možnosti využivania nerudných surovín na Slovensku. Mineralia Slovaca, 40, 175182.Google Scholar
Kraus, I., Čičel, B. & Machajdik, D. (1982) Origin and genesis of the clays resulting from alteration of rhyolite volcanic rocks in Central Slovakia. Geologica Carpathica, 33, 269275.Google Scholar
Kraus, I., Šamajová, E., Šucha, V., Lexa, J. & Hroncová, Z. (1994) Diagenetic and hydrothermal alterations of volcanic rocks into clay minerals and zeolites (Kremnické Vrchy Mts., the Western Carpathians). Geologica Carpathica, 45, 151158.Google Scholar
Lim, C.H. & Jackson, M.L. (1986) Expandable phyllosi-licate reactions with lithium on heating. Clays and Clay Minerals, 34, 346352.Google Scholar
Madejová, J. (2003) FTIR techniques in clay mineral studies. Vibrational Spectroscopy, 31, 110.Google Scholar
Madejová, J. & Komadel, P. (2001) Baseline studies of the clay minerals society source clays: infrared methods. Clays and Clay Minerals, 49, 410432.Google Scholar
Moncure, G.K., Surdam, R.C. & McKague, H.L. (1981) Zeolite diagenesis below Pahute Mesa, Nevada Testsite. Clays and Clay Minerals, 29, 385396.Google Scholar
Mozgawa, W., Fojud, Z., Handke, M. & Jurga, S. (2002) MAS NMR and FTIR spectra of framework alumino-silicates. Journal of Molecular Structure, 614, 281287.Google Scholar
Müller, D., Gessner, W., Behrends, H.J. & Scheler, G. (1981) Determination of the aluminium coordination in aluminium-oxygen compounds by solid-state high resolution 27Al NMR. Chemical Physics Letters, 79, 5962.Google Scholar
Nadeau, P.H., Farmer, Y.C., McHardy, W.J. & Bain, D.C. (1985) Compositional variations of the Unterrupsroth beidellite. American Mineralogist, 70, 10041010.Google Scholar
Panna, W., Wyszomirski, P. & Motyka, J. (2012) Możliwości wykorzystania wybranych surowców smektytowych jako materiałów dla celów hydroizola-cyjnych. Zeszyty Naukowe IGSMiE PAN, 83, 131145.Google Scholar
Polacci, M. (2005) Constraining the dynamics of volcanic eruptions by characterization of pumice textures. Annals of Geophysics, 48, 731738.Google Scholar
Reynolds, R.C. & Hower, J. (1970) The nature of interlayering in mixed-layer illite-montmorillonites. Clays and Clay Minerals, 18, 2536.CrossRefGoogle Scholar
Rivera, A., Ruiz-Salvador, A.R., Menorval, L.C. & Fari, T. (2003) Preliminary characterization of drug support systems based on natural clinoptilolite. Microporous and Mesoporous Materials, 61, 249259.Google Scholar
Šamajová, E., Kraus, I. & Lajčákova, A. (1992) Diagenetic alteration of Miocene acidic vitric tuffs of the Jástraba Formation (Kremnické Vrchy Mts., Western Carpahians). Geologica Carpathica- Clays, 1, 2730.Google Scholar
Sanz, J. & Serratosa, J.M. (1984) 29Si and 27Al high resolution MAS-NMR spectra of phyllosilicates. Journal of the American Chemical Society, 106, 47904793.Google Scholar
Singer, A. & Müller, G. (1983) Diagenesis in argillaceous sediments. Pp. 115–212 in: Diagenesis in Sediments and Sedimentary Rocks, 2 (G. Larsen & G.V. Chillingar, editors). Elsevier, Amsterdam.Google Scholar
Sucha, Y. & Kraus, I. (1999) Natural microporous materials of Central Slovakia. Pp. 101-107 in: Natural Microporous Materials in Environmental Technology (P. Misaelides, F. Macášek, T.J. Pinnavaia & C. Colella, editors). NATO Science Series, Series E: Applied Sciences, 362, Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
Šucha, V., Srodofl, I., Clauer, N., Elsass, F., Eberl, D.D., Kraus, I. & Madejová , J. (2001) Weathering of smectite and illite-smectite under temperate climatic conditions. Clay Minerals, 38, 40319.CrossRefGoogle Scholar
Stríček, I., Šucha, V., Uhlík, P. & Madejová, J. (2006) Zvetrávanie smektytu na ložiskách bentonitu. Mineralia Slovaca, 38, 337342.Google Scholar
Thompson, J.G. (1984) 29Si and 27Al nuclear magnetic resonance spectroscopy of 2 : 1 clay minerals. Clays Minerals, 19, 229236.Google Scholar
Tkáč, I., Komadel, P. & Müller, D. (1994) Acid treated montmorillonites - a study by 29Si and 27Al MAS NMR. Clay Minerals, 29, 1119.Google Scholar
Uhlík, P., Jánošík, M., Kraus, I., Pentrák, M. & Čaplovičová, M. (2012) Charakterizácia bentonitu z ložiska Hliník nad Hronom (jastrabská formácia štiavnického stratovulkánu, Západné Karpaty). Acta Geologica Slovaca, 4, 2, 125137.Google Scholar
Weiss, C.A., Altaner, S.P. & Kirkpatrick, R.J. (1987) High-resolution 29Si NMR spectroscopy of 2 : 1 layer silicates: correlations among chemical shift, structural distortions, and chemical variations. American Mineralogist, 72, 935942.Google Scholar
Wendlandt, R.F., Harrison, W.J. & Vaughan, D.J. (2007) Surface coatings on quartz grains in bentonites and their relevance to human health. Applied Geochemistry, 22, 22902306.Google Scholar
Wilson, M.D. & Pittman, E.D. (1977) Authigenic clays in sandstones: recognition and influence on reservoir properties and paleoenvironmental analysis. Journal of Sedimentary Petrology, 47, 331.Google Scholar
Woessner, D.E. (1989) Characterisation of clay minerals by 27Al nuclear magnetic resonance spectroscopy. American Mineralogist, 74, 203215.Google Scholar
Wyszomirski, P. & Lewicka, E. (2005) Bentonity jako uniwersalny surowiec wielu dziedzin przemysłu. Gospodarka Surowcami Mineralnymi, 21, 519.Google Scholar
Yang, W.-H., Kirkpatrick, R.J. & Henderson, D.M. (1986) High-resolution 29Si, 27Al and 23Na NMR spectro-scopic study of Al-Si disordering in annealed albite and oligoclase. American Mineralogist, 71, 712726.Google Scholar
Xiao, Y., Kirkpatrick, R.J., Hay, R.L. & Kim, Y.J. (1995) Investigation of Al, Si order in K-feldspars using 27Al and 29Si MAS NMR. Mineralogical Magazine, 59, 4761.Google Scholar