Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T16:03:22.632Z Has data issue: false hasContentIssue false

Climate, tectonics and meteoritic impact expressed by clay mineral sedimentation across the Cretaceous–Tertiary boundary at Blake Nose, Northwestern Atlantic

Published online by Cambridge University Press:  09 July 2018

F. Martínez–Ruiz*
Affiliation:
InstitutoAndaluz de Ciencias de la Tierra, Facultad de Ciencias, Avda. Fuentenueva, s/n. 18002Granada, Spain
M. Ortega-Huertas
Affiliation:
Departamento de Mineralogía y Petrología, Facultad de Ciencias, Avda. Fuentenueva, s/n. Universidad de Granada, 18002, GranadaSpain
I. Palomo
Affiliation:
Departamento de Mineralogía y Petrología, Facultad de Ciencias, Avda. Fuentenueva, s/n. Universidad de Granada, 18002, GranadaSpain
*

Abstract

The ODP Leg 171B drilled a transect of four sites at Blake Nose in the NW Atlantic providing an excellent record of the K-T boundary. At the deepest, Site 1049, the boundary is marked by a 9–17 cm thick layer formed mostly of green spherules composed of Fe-rich smectite resulting from the diagenetic alteration of tektites and impact glasses. Minor amounts of authigenic zeolites and palygorskite also occur. This association represents a notable break in the clay mineral composition of Cretaceous and Tertiary sequences. The clay mineral assemblages of the Cretaceous and Tertiary sediments are dominated by inherited clays. Aluminium-rich smectite of pedogenic origin is abundant in both Cretaceous and Tertiary sediments, indicating a relatively warm and hydrolysing climate across the K-T boundary. At Hole 1049A, where the oldest sediments of the interval were analysed, an increase in kaolinite and smectite down core suggests tectonic rejuvenation and distal transport of illite and kaolinite, probably accompanied by more hydrolysing conditions during the late Maastrichtian.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvarez, W. et al. (1991) Proximal impact deposits at the Cretaceous-Tertiary boundary in the Gulf of Mexico: reinterpreting DSDP Sites 536 and 540. Geol. Soc. Am. Abstr., A420.Google Scholar
Alvarez, W., Claeys, P. & Kieffer, S. (1995). Emplacement of Cretaceous-T ertiary boundary shocked quartz from Chicxulub crater. Science, 269, 930935.Google Scholar
Beck, K.C. & Weaver, C.E. (1978) Miocene of the SE United States: a model for chemical sedimentation in a peri-marine environment. Reply. Sed. Geol. 21, 154157.CrossRefGoogle Scholar
Caille`re, S., Hénin, S. & Rautureau, M. (1982) Miné ralogie des Argiles, 2. Classification et Nomenclature. Masson, Paris.Google Scholar
Chamley, H. (1979) North Atlantic clay sedimentation and paleoenvironment since the late Jurassic. Pp. 342361 in. Deep Drilling Results in the Atlantic Ocean: Continental margins and paleoenvironment (Talwani, M., Hay, W. & Ryan, W.B.F., editors). American Geophysical Union, 3, Washington, D.C.CrossRefGoogle Scholar
Chamley, H. & Robert, C. (1982) Paleoenvironmental significance of clay deposits in Atlantic black shales. Pp. 101112 in: Nature and Origin of Cretaceous Carbon-rich facies (Schlanger, S.O. & Cita, M.B., editors). Academic Press, New York.Google Scholar
Chamley, H., Debrabant, P., Candillier, A.M. & Foulon, J. (1983) Clay mineralogy and inorganic geochemical stratigraphy of Blake-Bahama basin since the Callovian, Site 435 (Deep Sea Drilling Project leg 76). Pp. 437451 in. Init. Reps. Deep Sea Drilling Project 76. U.S. Govt. Printing Office, Washington, D.C.Google Scholar
Debrabant, P., Fourcade, E., Chamley, H., Rocchia, R., Robin, E., Bellier, J.P., Gardin, S. & Thiébault, F. (1999) Les argiles de la transition Crétacé-Tertiaire au Guatemala, témoins d’un impact d’astéroõ¨de. Bull. Soc. Géol. France, 170, 643660.Google Scholar
Gu¨ven, N. (1988) Smectites. Pp. 497560 in. Hydrous Phyllosilicates (exclusive of Micas) (Bailey, S.W. editor). Reviews in Mineralogy, 19. Mineralogical Society of America, Washington, D.C.Google Scholar
Hildebrand, A.R. & Boynton, W.V. (1990) Proximal Cretaceous-Tertiary boundary impact deposits in the Caribbean. Science, 248, 843847.CrossRefGoogle ScholarPubMed
Jones, B.F. & Galán, E. (1988) Sepioli te and Palygors kite. Pp. 631674 in. Hydrous Phyllosilicates (exclusive of Micas) (Bailey, S.W. editor). Reviews in Mineralogy, 19. Mineralogical Society of America, Washington, D.C.CrossRefGoogle Scholar
Klaus, A., Norris, R.D., Kroon, D. & Smit, J. (2000) Impact-induced mass wasting at the K-T boundary: Blake Nose, western North Atlantic. Geology, 28, 319322.Google Scholar
Klaver, G.T., van Kempen, T.M.G., Bianchi, F.R. & van der Gaast, S.J. (1987) Green spherules as indicators of the Cretaceous/Tertiary boundry in Deep Sea Drilling Project Hole 603B. Pp. 10391056 in. Init. Reps. Deep Sea Drilling Project, 93. U.S. Gov. Printing Office, Washington, D.C.Google Scholar
Koeberl, C. & Sigurdsson, H. (1992) Geochemistry of impact glasses from the K/T boundary in Haiti: relation to smectites and a new types of glass. Geochim. Cosmochim. Acta, 56, 21132129.Google Scholar
Li, L. & Keller, G. (1998). Abrupt deep-sea warming at the end of the Cretaceous. Geology, 26, 995998.Google Scholar
Martínez-Ruiz, F., Ortega Huertas, M., Palomo, I. & Smit, J. (2000) K/T boundary spherules from Blake Nose (ODP Leg 171B) as a record of the Chicxulub ejecta deposits. Pp. 149161 in. Western North Atlantic Palaeogene and Cretaceous Palaeoceanography (Kroon, D., Norris, R.D. & Klaus, A., editors). Spec. Publ. 183. Geological Society, London.Google Scholar
Nieto, F., Ortega Huertas, M., Peacor, D.R. & Aróstegui, J. (1996) Evolution of illite- smectite from early diagenesis through incipient metamorphism in sediments of the Basque-Cantabrian basin. Clays Clay Miner. 44, 304323.Google Scholar
Norris, R.D., Kroon, D., Klaus, A., et al. (1998) Proc. ODP, Init. Repts., 171B: College Station, TX (Ocean Drilling Program).Google Scholar
Norris, R.D., Huber, B.T. & Self-Trail, J. (1999) Synchroneity of the K-T Oceanic Mass Extinction and Meteorite Impact: Blake Nose, Western North Atlantic. Geology, 27, 419422.Google Scholar
Olsson, R.K., Miller, K.G., Browning, J.V., Habib, D. & Sugarman, P.J. (1997) Ejecta layer at the Cretaceous- Tertiary boundary, Bass River, New Jersey (Ocean Drilling Program Leg 174AX). Geology, 25, 759762.Google Scholar
Ortega Huertas, M., Martínez-Ruiz, F., Palomo, I. & Chamley, H. (1995) Comparative mineralogical and geochemica l clay sedimentat ion in the Betic Cordilleras and Basque-Cantabrian Basin areas at the Cretaceous-Tertiary boundary. Sed. Geol. 94, 209227.Google Scholar
Pope, K.O., Ocampo, A.C., Fischer, A.G., Alvarez, W., Fouke, B.W., Webster, C.L., Vega, F.J., Smit, J., Fritsche, A.E. & Claeys, P. (1999) Chicxulub impact ejecta from Albion Island, Belize. Earth Planet. Sci. Lett. 170, 351364.CrossRefGoogle Scholar
Retallack, G.J. (1996) Acid trauma at the Cretaceous- Tertiary boundary in Eastern Montana. GSA Today, 6, 17.Google Scholar
Sigurdsson, H., Bont, M., Pradel, P. & D’Hondt, S. (1991a) Geochemica l constraints on source region of Cretaceous/Tertiary impact glasses. Nature, 353, 839842.Google Scholar
Sigurdsson, H., D’Hondt, S., Arthur, M.A., Bralower, T.J., Zachos, J.C., Fossen, M. & Channell, J.E.T. (1991b) Glass from the Cretaceous/Tertiary boundary in Haiti. Nature, 349, 482487.Google Scholar
Smit, J., Montanari, A., Swinburne, N.H.S., Alvarez, W., Hildebrand, A.R., Margolis, S.V., Claeys, P., Lowrie, W. & Asaro, F. (1992) Tektite-bearing, deep-water clastic unit at the Cretaceous-Tertiary boundary in northeastern Mexico. Geology, 20, 99103.Google Scholar
Singer, A (1979) Palygorskite in sediments: detrital, diagenetic or neoformed. A critical review. Geol. Runds. 68, 9961008.Google Scholar
Stott, L.D. & Kennett, J.P. (1990) The paleoceanographic and paleoclimatic signature of the Cretaceous/ Paleocene boundary in the Antarctic: Stable isotopic results from ODP Leg 113. Pp. 829848 in. Proc. ODP Sci. Results, 113 (Barker, P.F., Kennett, J.P. et al., editors). College Station, TX (Ocean Drilling Program).Google Scholar